【Bug】当用opencv库的imread()函数读取图像,用matplotlib库的plt.imshow()函数显示图像时,图像色彩出现偏差问题的解决方法

一,问题描述

我们在利用opencv的imread读取本地图像,进行一系列处理,但是发现用matplotlib库的imshow()函数显示的时候出现色彩改变 ,比如图像偏黄偏红偏蓝等等,但是对图像的处理并没有对色彩进行过改变。比如下面图像读取显示后直接变为黄色调:

代码如下:

python 复制代码
# encoding:utf-8
import cv2
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

img_1 = cv2.imread('sp_noise.jpg')
img_2 = cv2.imread('medianBlur.jpg')
img_3 = cv2.imread('mean.jpg')
img_4 = cv2.imread('Gaussian.jpg')

# 显示图形
titles = ['噪声图像', '中值滤波', '均值滤波 ', '高斯滤波']
images = [img_1, img_2, img_3, img_4]
for i in range(4):
    plt.subplot(2, 2, i + 1)
    plt.imshow(images[i])
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])
plt.show()

二,原因分析

这种色彩偏黄的问题通常是由于图像的颜色通道解释不正确引起的 。在OpenCV中,cv2.imread默认读取图像为BGR 颜色通道顺序,而Matplotlib中plt.imshow默认将颜色通道解释为RGB 。因此,当你用cv2.imread读取图像并用plt.imshow显示时,颜色通道顺序不匹配,导致颜色显示不正确。

三,解决方法

为了解决这个问题,你可以在使用cv2.imread读取图像时,将其转换为RGB颜色通道顺序,或者在使用plt.imshow显示图像时,指定颜色通道的顺序。以下是两种解决方法:

1.在cv2.imread()读取图像后将图像转化为RGB通道

python 复制代码
# 将BGR图像转换为RGB
img_1 = cv2.cvtColor(img_1, cv2.COLOR_BGR2RGB)
img_2 = cv2.cvtColor(img_2, cv2.COLOR_BGR2RGB)
img_3 = cv2.cvtColor(img_3, cv2.COLOR_BGR2RGB)
img_4 = cv2.cvtColor(img_4, cv2.COLOR_BGR2RGB)

2.在plt.imshow()图像后将其转换成BGR通道

python 复制代码
plt.imshow(cv2.cvtColor(images[i], cv2.COLOR_BGR2RGB))

四,完整代码

方法1:将图像转换为RGB颜色通道顺序

python 复制代码
import cv2
import matplotlib.pyplot as plt

img_1 = cv2.imread('sp_noise.jpg')
img_2 = cv2.imread('medianBlur.jpg')
img_3 = cv2.imread('mean.jpg')
img_4 = cv2.imread('Gaussian.jpg')

# 将BGR图像转换为RGB
img_1 = cv2.cvtColor(img_1, cv2.COLOR_BGR2RGB)
img_2 = cv2.cvtColor(img_2, cv2.COLOR_BGR2RGB)
img_3 = cv2.cvtColor(img_3, cv2.COLOR_BGR2RGB)
img_4 = cv2.cvtColor(img_4, cv2.COLOR_BGR2RGB)

# 显示图形
titles = ['噪声图像', '中值滤波', '均值滤波', '高斯滤波']
images = [img_1, img_2, img_3, img_4]
for i in range(4):
    plt.subplot(2, 2, i + 1), plt.imshow(images[i])
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])
plt.show()

方法2:指定plt.imshow中的颜色通道顺序

python 复制代码
import cv2
import matplotlib.pyplot as plt

img_1 = cv2.imread('sp_noise.jpg')
img_2 = cv2.imread('medianBlur.jpg')
img_3 = cv2.imread('mean.jpg')
img_4 = cv2.imread('Gaussian.jpg')

# 显示图形,指定颜色通道顺序为BGR
titles = ['噪声图像', '中值滤波', '均值滤波', '高斯滤波']
images = [img_1, img_2, img_3, img_4]
for i in range(4):
    plt.subplot(2, 2, i + 1), plt.imshow(cv2.cvtColor(images[i], cv2.COLOR_BGR2RGB))
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])
plt.show()

今日一笑:

范小勤:"我要开挖掘机"

相关推荐
叶子爱分享8 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
jndingxin12 小时前
OpenCV CUDA模块设备层-----反向二值化阈值处理函数thresh_binary_inv_func()
人工智能·opencv·计算机视觉
jndingxin13 小时前
OpenCV CUDA模块设备层-----在 GPU 上执行类似于 std::copy 的操作函数warpCopy()
人工智能·opencv·计算机视觉
晓131313 小时前
OpenCV篇——项目(二)OCR文档扫描
人工智能·python·opencv·pycharm·ocr
jndingxin13 小时前
OpenCV CUDA模块设备层-----在GPU 上高效地执行两个 uint 类型值的最大值比较函数vmax2()
人工智能·opencv·计算机视觉
一入JAVA毁终身14 小时前
处理Lombok的一个小BUG
java·开发语言·bug
加油吧zkf15 小时前
目标检测新纪元:DETR到Mamba实战解析
图像处理·人工智能·python·目标检测·分类
程序员阿超的博客15 小时前
Python 数据分析与机器学习入门 (五):Matplotlib 数据可视化基础
python·信息可视化·数据分析·matplotlib·数据可视化·python教程·pyplot
千宇宙航15 小时前
闲庭信步使用SV搭建图像测试平台:第二十七课——图像的腐蚀
图像处理·计算机视觉·fpga开发
luofeiju20 小时前
RGB下的色彩变换:用线性代数解构色彩世界
图像处理·人工智能·opencv·线性代数