【Bug】当用opencv库的imread()函数读取图像,用matplotlib库的plt.imshow()函数显示图像时,图像色彩出现偏差问题的解决方法

一,问题描述

我们在利用opencv的imread读取本地图像,进行一系列处理,但是发现用matplotlib库的imshow()函数显示的时候出现色彩改变 ,比如图像偏黄偏红偏蓝等等,但是对图像的处理并没有对色彩进行过改变。比如下面图像读取显示后直接变为黄色调:

代码如下:

python 复制代码
# encoding:utf-8
import cv2
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号

img_1 = cv2.imread('sp_noise.jpg')
img_2 = cv2.imread('medianBlur.jpg')
img_3 = cv2.imread('mean.jpg')
img_4 = cv2.imread('Gaussian.jpg')

# 显示图形
titles = ['噪声图像', '中值滤波', '均值滤波 ', '高斯滤波']
images = [img_1, img_2, img_3, img_4]
for i in range(4):
    plt.subplot(2, 2, i + 1)
    plt.imshow(images[i])
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])
plt.show()

二,原因分析

这种色彩偏黄的问题通常是由于图像的颜色通道解释不正确引起的 。在OpenCV中,cv2.imread默认读取图像为BGR 颜色通道顺序,而Matplotlib中plt.imshow默认将颜色通道解释为RGB 。因此,当你用cv2.imread读取图像并用plt.imshow显示时,颜色通道顺序不匹配,导致颜色显示不正确。

三,解决方法

为了解决这个问题,你可以在使用cv2.imread读取图像时,将其转换为RGB颜色通道顺序,或者在使用plt.imshow显示图像时,指定颜色通道的顺序。以下是两种解决方法:

1.在cv2.imread()读取图像后将图像转化为RGB通道

python 复制代码
# 将BGR图像转换为RGB
img_1 = cv2.cvtColor(img_1, cv2.COLOR_BGR2RGB)
img_2 = cv2.cvtColor(img_2, cv2.COLOR_BGR2RGB)
img_3 = cv2.cvtColor(img_3, cv2.COLOR_BGR2RGB)
img_4 = cv2.cvtColor(img_4, cv2.COLOR_BGR2RGB)

2.在plt.imshow()图像后将其转换成BGR通道

python 复制代码
plt.imshow(cv2.cvtColor(images[i], cv2.COLOR_BGR2RGB))

四,完整代码

方法1:将图像转换为RGB颜色通道顺序

python 复制代码
import cv2
import matplotlib.pyplot as plt

img_1 = cv2.imread('sp_noise.jpg')
img_2 = cv2.imread('medianBlur.jpg')
img_3 = cv2.imread('mean.jpg')
img_4 = cv2.imread('Gaussian.jpg')

# 将BGR图像转换为RGB
img_1 = cv2.cvtColor(img_1, cv2.COLOR_BGR2RGB)
img_2 = cv2.cvtColor(img_2, cv2.COLOR_BGR2RGB)
img_3 = cv2.cvtColor(img_3, cv2.COLOR_BGR2RGB)
img_4 = cv2.cvtColor(img_4, cv2.COLOR_BGR2RGB)

# 显示图形
titles = ['噪声图像', '中值滤波', '均值滤波', '高斯滤波']
images = [img_1, img_2, img_3, img_4]
for i in range(4):
    plt.subplot(2, 2, i + 1), plt.imshow(images[i])
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])
plt.show()

方法2:指定plt.imshow中的颜色通道顺序

python 复制代码
import cv2
import matplotlib.pyplot as plt

img_1 = cv2.imread('sp_noise.jpg')
img_2 = cv2.imread('medianBlur.jpg')
img_3 = cv2.imread('mean.jpg')
img_4 = cv2.imread('Gaussian.jpg')

# 显示图形,指定颜色通道顺序为BGR
titles = ['噪声图像', '中值滤波', '均值滤波', '高斯滤波']
images = [img_1, img_2, img_3, img_4]
for i in range(4):
    plt.subplot(2, 2, i + 1), plt.imshow(cv2.cvtColor(images[i], cv2.COLOR_BGR2RGB))
    plt.title(titles[i])
    plt.xticks([]), plt.yticks([])
plt.show()

今日一笑:

范小勤:"我要开挖掘机"

相关推荐
知舟不叙34 分钟前
基于OpenCV中的图像拼接方法详解
人工智能·opencv·计算机视觉·图像拼接
小龙Guo1 小时前
QT+opencv实现卡尺工具找圆、拟合圆
开发语言·qt·opencv
新知图书2 小时前
OpenCV实现数字水印的相关函数和示例代码
人工智能·opencv·计算机视觉
钟屿5 小时前
Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise论文阅读
论文阅读·图像处理·人工智能·深度学习·计算机视觉
孚为智能科技5 小时前
无人机箱号识别系统结合5G技术的应用实践
图像处理·人工智能·5g·目标检测·计算机视觉·视觉检测·无人机
灏瀚星空5 小时前
地磁-惯性-视觉融合制导系统设计:现代空战导航的抗干扰解决方案
图像处理·人工智能·python·深度学习·算法·机器学习·信息与通信
健康胡6 小时前
仿射变换 与 透视变换
图像处理·人工智能·深度学习·opencv·算法·机器学习·计算机视觉
胡耀超7 小时前
图像颜色理论与数据挖掘应用的全景解析
人工智能·python·opencv·计算机视觉·数据挖掘·视觉检测·pillow
PacosonSWJTU9 小时前
python使用matplotlib画图
开发语言·python·matplotlib
码小跳19 小时前
Halcon案例(一):C#联合Halcon识别路由器上的散热孔
图像处理·c#