acwing算法基础之数学知识--求数a的欧拉函数值phi(a)

目录

  • [1 基础知识](#1 基础知识)
  • [2 模板](#2 模板)
  • [3 工程化](#3 工程化)

1 基础知识

数a的欧拉函数 ϕ ( a ) \phi(a) ϕ(a):表示1~n中与n互质的数的个数。其中两个数互质,是指这两个数的最大公约数为1。

根据定义,我们可以写出如下方法,

cpp 复制代码
int gcd(int a, int b) {
	return b ? gcd(b, a % b) : a;
}

int phi(int a) {
	int res = 0;
	for (int i = 1; i <= a; ++i) {
		if (gcd(i, a) == 1) {
			res += 1;
		}
	}
	return res;
}

但存在更快的求解方法,见如下关键步骤:

  1. 对数a进行分解质因子操作。
    a = p 1 α 1 ⋅ p 2 α 2 ⋯ p k α k a=p_1^{\alpha_1} \cdot p_2^{\alpha_2}\cdots p_k^{\alpha_k} a=p1α1⋅p2α2⋯pkαk
cpp 复制代码
unordered_map<int,int> get_prime_divisors(int a) {
	unordered_map<int,int> mp;
	for (int i = 2; i <= a / i; ++i) {
		if (a % i == 0) {
			int s = 0;
			while (a % i == 0) {
				a /= i;
				s++;
			}
			mp[i] = s;
		}
	}
	if (a > 1) mp[a] = 1;
	return mp;
}
  1. 计算数a的欧拉函数,
    ϕ ( a ) = a ⋅ ( 1 − 1 p 1 ) ⋅ ( 1 − 1 p 2 ) ⋯ ( 1 − 1 p k ) \phi(a)=a\cdot (1-\frac{1}{p_1}) \cdot (1-\frac{1}{p_2}) \cdots (1-\frac{1}{p_k}) ϕ(a)=a⋅(1−p11)⋅(1−p21)⋯(1−pk1)
cpp 复制代码
int phi(int a, unordered_map<int,int> mp) {
	int res = a;
	for (auto [x, y] : mp) {
		res = res / x * (x - 1);
	}
	return res;
} 

可以将以上两步合并,请看如下代码,

cpp 复制代码
int phi(int a) {
	int res = a;
	for (int i = 2; i <= a / i; ++i) {
		if (a % i == 0) {
			res = res / i * (i - 1);
			while (a % i == 0) {
				a /= i;
			}
		}
	}
	if (a > 1) {
		res = res / a * (a - 1);
	}
	return res;
}

2 模板

cpp 复制代码
int phi(int x)
{
    int res = x;
    for (int i = 2; i <= x / i; i ++ )
        if (x % i == 0)
        {
            res = res / i * (i - 1);
            while (x % i == 0) x /= i;
        }
    if (x > 1) res = res / x * (x - 1);

    return res;
}

3 工程化

题目1:输入n个数,请分别求出它们的欧拉函数值。

cpp 复制代码
#include <iostream>

using namespace std;

int main() {
    int n;
    cin >> n;
    
    while (n--) {
        int x;
        cin >> x;
        
        int res = x;
        for (int i = 2; i <= x / i; ++i) {
            if (x % i == 0) {
                res = res / i * (i - 1);
                while (x % i == 0) x /= i;
            }
        }
        if (x > 1) res = res / x * (x - 1);
        cout << res << endl;
    }
    
    return 0;
}
相关推荐
代码不停16 分钟前
Java前缀和算法题目练习
java·开发语言·算法
courniche20 分钟前
分组密码常见结构简介
算法·密码学
涤生z24 分钟前
list.
开发语言·数据结构·c++·学习·算法·list
茜茜西西CeCe43 分钟前
数字图像处理-图像增强(2)
人工智能·算法·计算机视觉·matlab·数字图像处理·图像增强·陷波滤波器
薰衣草23331 小时前
hot100练习-11
算法·leetcode
地平线开发者2 小时前
征程 6 | 工具链如何支持 Matmul/Conv 双 int16 输入量化?
人工智能·算法·自动驾驶
甄心爱学习2 小时前
数值计算-线性方程组的迭代解法
算法
stolentime2 小时前
SCP2025T2:P14254 分割(divide) 题解
算法·图论·组合计数·洛谷scp2025
Q741_1472 小时前
C++ 面试基础考点 模拟题 力扣 38. 外观数列 题解 每日一题
c++·算法·leetcode·面试·模拟
W_chuanqi2 小时前
RDEx:一种效果驱动的混合单目标优化器,自适应选择与融合多种算子与策略
人工智能·算法·机器学习·性能优化