吴恩达《机器学习》8-3->8-4:模型表示I、模型表示II

8.3、模型表示I

一、大脑神经网络的基本原理

为了构建神经网络模型,首先需要理解大脑中的神经网络是如何运作的。每个神经元都可以被看作是一个处理单元或神经核,它包含多个输入(树突)和一个输出(轴突)。神经网络是由大量神经元相互连接,并通过电脉冲进行交流的复杂网络。

神经元之间利用微弱的电流进行通信,这些电流被称为动作电位。当神经元要传递消息时,通过轴突发送微弱电流给其他神经元,形成一种信息传递的链条。这与人类思考的模型相似,其中神经元通过计算将收到的消息传递给其他神经元,也是感觉和肌肉运动的基本原理。

二、神经网络模型的构建

神经网络模型建立在许多神经元之上,每个神经元都是一个个学习模型,也被称为激活单元。这些激活单元采纳一些特征作为输入,并根据自身的模型提供一个输出。一个示例是以逻辑回归模型作为学习模型的神经元,其中参数被称为权重。

我们设计了一个类似于神经元的神经网络,包括输入单元、中间单元和输出单元。输入单元接收原始数据,中间单元进行数据处理,最后输出单元计算 ℎ𝜃(x)。

三、神经网络的层级结构和标记法

神经网络模型是由许多逻辑单元按照不同层级组织而成的网络。这包括输入层、隐藏层和输出层。在模型表示中,引入了标记法来帮助描述神经网络的结构。例如,𝑎𝑖(𝑗) 代表第 j 层的第 i 个激活单元,𝜃(𝑗) 代表从第 j 层映射到第 j + 1 层的权重矩阵。

四、前向传播算法

为了将训练集输入神经网络进行学习,我们使用了前向传播算法。该算法从左到右逐步计算神经网络的输出,通过一系列计算得到最终结果。具体而言,通过矩阵表示,我们将整个模型的运算过程整合为一个简洁的式子:𝜃 ⋅ 𝑋 = 𝑎。

这一学习内容为构建神经网络模型提供了基础,我们了解了神经网络的基本结构和运作原理。在模型表示的下一部分,我们将深入学习神经网络的训练过程和反向传播算法。

8.4、模型表示II

一、向量化计算和前向传播

二、神经网络与 Logistic Regression 的关系

参考资料

[中英字幕]吴恩达机器学习系列课程

黄海广博士 - 吴恩达机器学习个人笔记

相关推荐
翻滚的小@强3 分钟前
数据挖掘笔记:点到线段的距离计算
人工智能·笔记·数据挖掘
会思考的猴子8 分钟前
UE5 PCG 笔记(二) Difference 节点
笔记·ue5
yuxb7322 分钟前
Linux 文本处理与 Shell 编程笔记:正则表达式、sed、awk 与变量脚本
linux·笔记·正则表达式
饕餮争锋4 小时前
设计模式笔记_行为型_访问者模式
笔记·设计模式·访问者模式
不羁。。6 小时前
【撸靶笔记】第七关:GET - Dump into outfile - String
数据库·笔记·oracle
RaymondZhao3410 小时前
【全面推导】策略梯度算法:公式、偏差方差与进化
人工智能·深度学习·算法·机器学习·chatgpt
好望角雾眠10 小时前
第一阶段C#基础-10:集合(Arraylist,list,Dictionary等)
笔记·学习·c#
艾伦~耶格尔10 小时前
【集合框架LinkedList底层添加元素机制】
java·开发语言·学习·面试
zhangfeng113310 小时前
DBSCAN算法详解和参数优化,基于密度的空间聚类算法,特别擅长处理不规则形状的聚类和噪声数据
算法·机器学习·聚类
星仔编程10 小时前
python学习DAY46打卡
学习