吴恩达《机器学习》8-3->8-4:模型表示I、模型表示II

8.3、模型表示I

一、大脑神经网络的基本原理

为了构建神经网络模型,首先需要理解大脑中的神经网络是如何运作的。每个神经元都可以被看作是一个处理单元或神经核,它包含多个输入(树突)和一个输出(轴突)。神经网络是由大量神经元相互连接,并通过电脉冲进行交流的复杂网络。

神经元之间利用微弱的电流进行通信,这些电流被称为动作电位。当神经元要传递消息时,通过轴突发送微弱电流给其他神经元,形成一种信息传递的链条。这与人类思考的模型相似,其中神经元通过计算将收到的消息传递给其他神经元,也是感觉和肌肉运动的基本原理。

二、神经网络模型的构建

神经网络模型建立在许多神经元之上,每个神经元都是一个个学习模型,也被称为激活单元。这些激活单元采纳一些特征作为输入,并根据自身的模型提供一个输出。一个示例是以逻辑回归模型作为学习模型的神经元,其中参数被称为权重。

我们设计了一个类似于神经元的神经网络,包括输入单元、中间单元和输出单元。输入单元接收原始数据,中间单元进行数据处理,最后输出单元计算 ℎ𝜃(x)。

三、神经网络的层级结构和标记法

神经网络模型是由许多逻辑单元按照不同层级组织而成的网络。这包括输入层、隐藏层和输出层。在模型表示中,引入了标记法来帮助描述神经网络的结构。例如,𝑎𝑖(𝑗) 代表第 j 层的第 i 个激活单元,𝜃(𝑗) 代表从第 j 层映射到第 j + 1 层的权重矩阵。

四、前向传播算法

为了将训练集输入神经网络进行学习,我们使用了前向传播算法。该算法从左到右逐步计算神经网络的输出,通过一系列计算得到最终结果。具体而言,通过矩阵表示,我们将整个模型的运算过程整合为一个简洁的式子:𝜃 ⋅ 𝑋 = 𝑎。

这一学习内容为构建神经网络模型提供了基础,我们了解了神经网络的基本结构和运作原理。在模型表示的下一部分,我们将深入学习神经网络的训练过程和反向传播算法。

8.4、模型表示II

一、向量化计算和前向传播

二、神经网络与 Logistic Regression 的关系

参考资料

[中英字幕]吴恩达机器学习系列课程

黄海广博士 - 吴恩达机器学习个人笔记

相关推荐
知识分享小能手19 小时前
React学习教程,从入门到精通, React 属性(Props)语法知识点与案例详解(14)
前端·javascript·vue.js·学习·react.js·vue·react
Christo321 小时前
TFS-2018《On the convergence of the sparse possibilistic c-means algorithm》
人工智能·算法·机器学习·数据挖掘
汇能感知21 小时前
摄像头模块在运动相机中的特殊应用
经验分享·笔记·科技
阿巴Jun1 天前
【数学】线性代数知识点总结
笔记·线性代数·矩阵
非门由也1 天前
《sklearn机器学习——管道和复合估计器》回归中转换目标
机器学习·回归·sklearn
茯苓gao1 天前
STM32G4 速度环开环,电流环闭环 IF模式建模
笔记·stm32·单片机·嵌入式硬件·学习
是誰萆微了承諾1 天前
【golang学习笔记 gin 】1.2 redis 的使用
笔记·学习·golang
DKPT1 天前
Java内存区域与内存溢出
java·开发语言·jvm·笔记·学习
aaaweiaaaaaa1 天前
HTML和CSS学习
前端·css·学习·html
ST.J1 天前
前端笔记2025
前端·javascript·css·vue.js·笔记