文章目录
- [0 代码仓库](#0 代码仓库)
- [1 Dijkstra算法](#1 Dijkstra算法)
- [2 Dijkstra算法的实现](#2 Dijkstra算法的实现)
-
- [2.1 设置距离数组](#2.1 设置距离数组)
- [2.2 找到当前路径的最小值 curdis,及对应的该顶点cur](#2.2 找到当前路径的最小值 curdis,及对应的该顶点cur)
- [2.3 更新权重](#2.3 更新权重)
- [2.4 其他接口](#2.4 其他接口)
-
- [2.4.1 判断某个顶点的连通性](#2.4.1 判断某个顶点的连通性)
- [2.4.2 求源点s到某个顶点的最短路径](#2.4.2 求源点s到某个顶点的最短路径)
- 3使用优先队列优化-Dijkstra算法
-
- [3.1 设计内部类node](#3.1 设计内部类node)
- [3.2 入队](#3.2 入队)
- [3.3 记录路径](#3.3 记录路径)
- [3.4 整体](#3.4 整体)
- [4 Bellman-Ford算法](#4 Bellman-Ford算法)
-
- [4.1 松弛操作](#4.1 松弛操作)
- [4.2 负权环](#4.2 负权环)
- [4.3 算法思想](#4.3 算法思想)
- [4.4 进行V-1次松弛操作](#4.4 进行V-1次松弛操作)
- [4.5 判断负权环](#4.5 判断负权环)
- [4.6 整体](#4.6 整体)
- [5 Floyed算法](#5 Floyed算法)
-
- [5.1 设置记录两点最短距离的数组,并初始化两点之间的距离](#5.1 设置记录两点最短距离的数组,并初始化两点之间的距离)
- [5.2 更新两点之间的距离](#5.2 更新两点之间的距离)
0 代码仓库
https://github.com/Chufeng-Jiang/Graph-Theory/tree/main/src/Chapter11_Min_Path
1 Dijkstra算法
2 Dijkstra算法的实现
2.1 设置距离数组
c
//用于存储从源点到当前节点的距离,并初始化
dis = new int[G.V()];
Arrays.fill(dis, Integer.MAX_VALUE);
dis[s] = 0;
2.2 找到当前路径的最小值 curdis,及对应的该顶点cur
c
int cur = -1, curdis = Integer.MAX_VALUE;
for(int v = 0; v < G.V(); v ++)
if(!visited[v] && dis[v] < curdis){
curdis = dis[v];
cur = v;
}
2.3 更新权重
c
visited[cur] = true;
for(int w: G.adj(cur))
if(!visited[w]){
if(dis[cur] + G.getWeight(cur, w) < dis[w])
dis[w] = dis[cur] + G.getWeight(cur, w);
}
2.4 其他接口
2.4.1 判断某个顶点的连通性
c
public boolean isConnectedTo(int v){
G.validateVertex(v);
return visited[v];
}
2.4.2 求源点s到某个顶点的最短路径
c
public int distTo(int v){
G.validateVertex(v);
return dis[v];
}
3使用优先队列优化-Dijkstra算法
3.1 设计内部类node
存放节点编号和距离
c
private class Node implements Comparable<Node>{
public int v, dis;
public Node(int v, int dis){
this.v = v;
this.dis = dis;
}
@Override
public int compareTo(Node another){
return dis - another.dis;
}
}
3.2 入队
c
PriorityQueue<Node> pq = new PriorityQueue<Node>();
pq.add(new Node(s, 0));
这里的缺点就是,更新node时候,会重复添加节点相同的node,但是路径值不一样。不影响最后结果。
cpp
while(!pq.isEmpty()){
int cur = pq.remove().v;
if(visited[cur]) continue;
visited[cur] = true;
for(int w: G.adj(cur))
if(!visited[w]){
if(dis[cur] + G.getWeight(cur, w) < dis[w]){
dis[w] = dis[cur] + G.getWeight(cur, w);
pq.add(new Node(w, dis[w]));
pre[w] = cur;
}
}
}
3.3 记录路径
c
private int[] pre;
- 更新pre数组
c
for(int w: G.adj(cur))
if(!visited[w]){
if(dis[cur] + G.getWeight(cur, w) < dis[w]){
dis[w] = dis[cur] + G.getWeight(cur, w);
pq.add(new Node(w, dis[w]));
pre[w] = cur;
}
}
- 输出路径
c
public Iterable<Integer> path(int t){
ArrayList<Integer> res = new ArrayList<>();
if(!isConnectedTo(t)) return res;
int cur = t;
while(cur != s){
res.add(cur);
cur = pre[cur];
}
res.add(s);
Collections.reverse(res);
return res;
}
3.4 整体
c
package Chapter11_Min_Path.Dijkstra_pq;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.PriorityQueue;
public class Dijkstra {
private WeightedGraph G;
private int s;
private int[] dis;
private boolean[] visited;
private int[] pre;
private class Node implements Comparable<Node>{
public int v, dis;
public Node(int v, int dis){
this.v = v;
this.dis = dis;
}
@Override
public int compareTo(Node another){
return dis - another.dis;
}
}
public Dijkstra(WeightedGraph G, int s){
this.G = G;
G.validateVertex(s);
this.s = s;
dis = new int[G.V()];
Arrays.fill(dis, Integer.MAX_VALUE);
pre = new int[G.V()];
Arrays.fill(pre, -1);
dis[s] = 0;
pre[s] = s;
visited = new boolean[G.V()];
PriorityQueue<Node> pq = new PriorityQueue<Node>();
pq.add(new Node(s, 0));
while(!pq.isEmpty()){
int cur = pq.remove().v;
if(visited[cur]) continue;
visited[cur] = true;
for(int w: G.adj(cur))
if(!visited[w]){
if(dis[cur] + G.getWeight(cur, w) < dis[w]){
dis[w] = dis[cur] + G.getWeight(cur, w);
pq.add(new Node(w, dis[w]));
pre[w] = cur;
}
}
}
}
public boolean isConnectedTo(int v){
G.validateVertex(v);
return visited[v];
}
public int distTo(int v){
G.validateVertex(v);
return dis[v];
}
public Iterable<Integer> path(int t){
ArrayList<Integer> res = new ArrayList<>();
if(!isConnectedTo(t)) return res;
int cur = t;
while(cur != s){
res.add(cur);
cur = pre[cur];
}
res.add(s);
Collections.reverse(res);
return res;
}
static public void main(String[] args){
WeightedGraph g = new WeightedGraph("g.txt");
Dijkstra dij = new Dijkstra(g, 0);
for(int v = 0; v < g.V(); v ++)
System.out.print(dij.distTo(v) + " ");
System.out.println();
System.out.println(dij.path(3));
}
}
4 Bellman-Ford算法
4.1 松弛操作
4.2 负权环
4.3 算法思想
4.4 进行V-1次松弛操作
c
// 进行V-1次松弛操作
for(int pass = 1; pass < G.V(); pass ++){
for(int v = 0; v < G.V(); v ++)
for(int w: G.adj(v))
if(dis[v] != Integer.MAX_VALUE && // 避免对无穷值的点进行松弛操作
dis[v] + G.getWeight(v, w) < dis[w]){
dis[w] = dis[v] + G.getWeight(v, w);
pre[w] = v;
}
}
4.5 判断负权环
c
// 多进行一次操作,如果还有更新,那么存在负权换
for(int v = 0; v < G.V(); v ++)
for(int w : G.adj(v))
if(dis[v] != Integer.MAX_VALUE &&
dis[v] + G.getWeight(v, w) < dis[w])
hasNegCycle = true;
4.6 整体
c
package Chapter11_Min_Path.BellmanFord;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
public class BellmanFord {
private WeightedGraph G;
private int s;
private int[] dis;
private int[] pre;
private boolean hasNegCycle = false;
public BellmanFord(WeightedGraph G, int s){
this.G = G;
G.validateVertex(s);
this.s = s;
dis = new int[G.V()];
Arrays.fill(dis, Integer.MAX_VALUE);
dis[s] = 0;
pre = new int[G.V()];
Arrays.fill(pre, -1);
// 进行V-1次松弛操作
for(int pass = 1; pass < G.V(); pass ++){
for(int v = 0; v < G.V(); v ++)
for(int w: G.adj(v))
if(dis[v] != Integer.MAX_VALUE && // 避免对无穷值的点进行松弛操作
dis[v] + G.getWeight(v, w) < dis[w]){
dis[w] = dis[v] + G.getWeight(v, w);
pre[w] = v;
}
}
// 多进行一次操作,如果还有更新,那么存在负权换
for(int v = 0; v < G.V(); v ++)
for(int w : G.adj(v))
if(dis[v] != Integer.MAX_VALUE &&
dis[v] + G.getWeight(v, w) < dis[w])
hasNegCycle = true;
}
public boolean hasNegativeCycle(){
return hasNegCycle;
}
public boolean isConnectedTo(int v){
G.validateVertex(v);
return dis[v] != Integer.MAX_VALUE;
}
public int distTo(int v){
G.validateVertex(v);
if(hasNegCycle) throw new RuntimeException("exist negative cycle.");
return dis[v];
}
public Iterable<Integer> path(int t){
ArrayList<Integer> res = new ArrayList<Integer>();
if(!isConnectedTo(t)) return res;
int cur = t;
while(cur != s){
res.add(cur);
cur = pre[cur];
}
res.add(s);
Collections.reverse(res);
return res;
}
static public void main(String[] args){
WeightedGraph g = new WeightedGraph("gw2.txt");
BellmanFord bf = new BellmanFord(g, 0);
if(!bf.hasNegativeCycle()){
for(int v = 0; v < g.V(); v ++)
System.out.print(bf.distTo(v) + " ");
System.out.println();
System.out.println(bf.path(3));
}
else
System.out.println("exist negative cycle.");
WeightedGraph g2 = new WeightedGraph("g2.txt");
BellmanFord bf2 = new BellmanFord(g2, 0);
if(!bf2.hasNegativeCycle()){
for(int v = 0; v < g2.V(); v ++)
System.out.print(bf2.distTo(v) + " ");
System.out.println();
}
else
System.out.println("exist negative cycle.");
}
}
5 Floyed算法
5.1 设置记录两点最短距离的数组,并初始化两点之间的距离
c
private int[][] dis;
- 初始化两点之间的距离
c
for(int v = 0; v < G.V(); v ++){
dis[v][v] = 0;
for(int w: G.adj(v))
dis[v][w] = G.getWeight(v, w);
}
5.2 更新两点之间的距离
第一重循环:测试两点之间经过点t是否存在更短的路径。
c
for(int t = 0; t < G.V(); t ++)
for(int v = 0; v < G.V(); v ++)
for(int w = 0; w < G.V(); w ++)
if(dis[v][t] != Integer.MAX_VALUE && dis[t][w] != Integer.MAX_VALUE
&& dis[v][t] + dis[t][w] < dis[v][w])
dis[v][w] = dis[v][t] + dis[t][w];