蒙特卡洛树搜索(Monte Carlo Tree Search)揭秘

一. 什么是蒙特卡洛树搜索

蒙特卡洛树搜索(MCTS)是一种启发式搜索算法,一般用在棋牌游戏中,如围棋、西洋棋、象棋、黑白棋、德州扑克等。MCTS与人工神经网络结合,可发挥巨大的作用,典型的例子是2016年的AlphaGo,以4:1的比分战胜了韩国的9段棋手李世石。

二. 蒙特卡洛树搜索蒙特卡罗方法的区别

蒙特卡罗方法使用随机抽样 来解决其他方法难以或不可能解决的确定性问题 ,是一类计算方法的统称 。它被广泛用在数学、物理 的问题中,基本上能解决具有概率解释的任何问题。蒙特卡罗方法的应用领域 包括:统计物理学、工程学、计算生物学、计算机图形学、AI游戏 、金融和商业等。而蒙特卡洛树搜索 (MCTS)就是其在AI游戏 中的应用,它用于搜索游戏中的最佳动作

三. MCTS的工作原理

MCTS使用一个tree来记录搜索结果,它更新tree的方法就是模拟游戏。就像人类在下棋时会在大脑中模拟对手的着法,厉害的甚至计算10步、20步以后,MCTS也是类似的原理。它先模拟几次游戏,然后把游戏结果记录在tree中,再根据最好的模拟结果选择最佳的动作。

MCTS一共包含4个步骤:选择(Selection)、扩展(Expansion)、模拟(Simulation)、反向传播(BackPropagation)。

1)选择(Selection)是从根节点开始,连续选择子节点,一直到达某个叶子节点,然后在那个节点上进行更新。也就是说,select时只会选leaf node(叶子节点)。

注意:根节点是当前的游戏状态 ,叶节点是尚未启动模拟的任何潜在子节点。

2)扩展(Expansion)也叫**expand,**是指一个节点往下,产生新的子节点。

3)模拟(Simulation)也叫rollout ,是随机模拟,即以目前的状态开始,模拟一场游戏直到结束。有时也叫播放推出

expand和rollout区别是,如果目前节点是全新的,就进行rollout,如果节点已经被更新过,就进行expand。(这种说法可能不准确!)

4)反向传播(BackPropagation)就是把leaf node的更新一直往上传,直到根节点。有点类似神经网络的BP,但更简单,不涉及微积分。

MCTS整个执行过程如下

第一次模拟

我们有一个node,记录wi和ni的值,其中wi代表赢了几场,ni代表总场数。对于围棋来说,我们一般用wi代表黑棋赢的场数。

在一开始,我们没进行任何游戏,因此wi和ni都为0

第一步,选择一个没有child的node,目前只有root节点可选。

第二步 ,因为是全新的节点,需要进行rollout。由于root代表开局状态,黑棋和白棋都没下过,所以进行rollout没任何意义,因此先进行expand。在19x19的棋盘上,一共361个位置可以下。因此expand之后有361个child节点。

为了简单起见,假设只有两个位置可以选。

在expand之后,黑色root节点不再是leaf节点。

第三步 ,选择一个leaf节点进行rollout。从root开始寻找,此时有两个child选项。如何决定选哪个?这时候要用到一个概念,叫做UCB1(Upper Confidence Bound), 也叫上置信度边界1。如下

其中wi 表示当前node赢的次数ni 表示当前node总共的模拟次数Ni 表示当前node的父节点的模拟次数C 是可以自己调整 的参数,最常用的是

对于左下角的leaf节点,还没模拟过,因此wi=0,ni=0,它的父节点即root,也是0/0,因此Ni=0,所以套用ucb1公式发现,分母为0无法计算 。所以当做ucb1的结果无限大。同样右下角的节点也是无限大。

由于两个都是无限大,所以按顺序选节点即可,比如选择左下角节点

此节点是leaf node,同时也是全新的节点,现在对它rollout。因为root节点代表黑棋下,所以现在轮到白棋下,然后黑棋再下,一直到游戏结束。

假设下到最后,黑棋赢了,那就更新这个node的值。因为黑棋赢了一场,就将wi更新为1,ni也更新为1.

接下来进行最后一步,即反向传播。因此黑色root节点也变为了1/1,如下

此时完成了一次MCTS模拟。一共需要几次模拟,是你可以自行设置的。模拟越多次,MCTS最后搜索的结果越准确,提供的着法越强大。一般需要跑几万几十万次甚至更多。这个例子,我们再进行几次更新说明。

第二次模拟

第一步,选择一个没有child的node,有两个选项,需要计算两个node的ucb1

左边的ucb1是1(代入公式可得),右边的ucb1是无穷大,右边更大,选择它。

第二步,因为是全新的节点,需要进行rollout(无需expand)。假设这次黑棋输了,如下

此时wi不会增加,仍为0,但是ni加1,于是有

第三步,反向传播。把黑色root节点的ni也加1,即有

第三次模拟

第一步,选择一个没有child的node,有两个选项,需要计算两个node的ucb1

左边是2.177,右边是1.177,因此选择左边。

第二步,因为该leaf节点已经被更新过,所以先expand。同样假设生成两个子节点。此时白色节点不再是leaf node,需要继续往下select。和前面一样,两个children节点都是新的,ucb1都是无穷大,因此按顺序选左边那个。

第三步,对左下角leaf节点进行rollout。和前面一样,随机下到游戏结束为止。这次假设黑棋输了。

此时把ni更新为1,而wi保持不变。

第四步,反向传播。依次更新白色、黑色节点为1/2、1/3.

第四次模拟

第一步 ,选择一个没有child的node,第二层白色节点有两个,需要计算两个node的ucb1,左边是1.548,右边是1.482,左边更大选它。

由于没到达leaf节点,需要继续往下select;此时轮到白的 下,在计算ucb1的时候,要使用白棋 的wi;而目前节点上记录的都是黑棋的胜率 ,需要进行换算;假设不考虑和棋(围棋的确没有和棋),白棋赢的次数=总场次-黑棋赢的次数 ;即ni-wi就是白棋赢的次数;所以左路径白棋的wi是1,得出ucb1为2.177;右路径白棋的wi是0,得出ucb1为无穷大;所以选择右边

第二步,因为该leaf node是全新的节点,需要进行rollout(无需expand)。这次假设是黑棋赢,我们把wi和ni都加1,则0/0变为1/1

第三步,反向传播。白色节点、root节点依次变为2/3、2/4

四次模拟结束,你就可以决定该下哪步了。黑棋下左边的位置胜率为2/3,而右边胜率为0。所以下左边。

UCB1公式的意义

ucb1的公式分为左右两部分,左边是胜率,如果一个node的胜率越高,那么ucb1值也越高,即胜率越高的一步棋,越容易继续被选中。MCTS需要模拟足够多的次数,来让胜率越准确。

右边这一项,ni在分母,Ni在分子,因此模拟中一条路走过的次数越多,ni相对Ni就越大,就会导致ucb1相对变小。换言之,已经走过很多次的路,MCTS就不想再走了,这是为了探索 其他路径会不会有更好的着法

ucb1公式体现了游戏中平衡开发(exploitation)和探索(exploration) 的思想**。开发(exploitation)** 为了选择已知最好策略探索(exploration) 为了选择探索其他路线 。如果只做exploitation, 而忽略exploration ,即永远选择胜率最高的路径,可能就无法发现更好的着法。如果只做exploration, 而忽略exploitation,意味着对围棋361个位置进行平均的探索,会浪费很多时间探索胜率很低的路径,效率太差,MCTS的深度到不了太深,着法也不会准确。

四. AlphaGo如何使用MCTS

AlphaGo如何将MCTS和deep learning相结合的呢?

AlphaGo在搜索的时候,使用了两个神经网络,value network(值网络)policy network(策略网络),如下

policy network作用和原理: 只要喂给policy network目前棋盘上的状态,它就可以得出下一步的最佳落点 ;policy network能给棋盘每个 位置打分 来选择下一步(即move),这样就能取代ucb1;能减小search的广度(breadth),并提高准确性

value network作用和原理: value network用来取代rollout, 意思是不需要真正模拟到分出胜负。 用value network就能根据棋局状态(即board positions ) 得出双方输赢的概率;能减小search的深度(depth),并提高准确性

说明 :AlphaGo的policy network有两种 , supervised learning (SL) policy network和reinforcement learning (RL) policy network,即基于监督学习 的策略网络和基于强化学习 的策略网络,区别是训练数据来源 的不同。SL的数据来自人类专家 棋谱数据。RL的数据来自AI自我博弈 (selfplay)。

policy network和value network的训练过程

policy network首先在人类专家数据上进行监督学习,从而能预测人类专家的着法;然后利用policy-gradient强化学习算法进行优化。value network利用两个训练好的policy network相互博弈来进行预测输赢。

扩展:AlphaGoAlphaGo ZeroAlphaGo Master三者区别

AlphaGo Zero是只基于自我博弈(selfplay)强化学习训练得到的,没有任何人类数据的监督。AlphaGo Zero使用了单个neural network,而不是分开的policy network和value network两个网络。如果说AlphaGo中MonteCarlo rollout和value network同时存在,互相补充,那么在AlphaGo Zero中rollout则被neural network完全取代了。AlphaGo Zero的MCTS更加简化。AlphaGo Master和AlphaGo Zero使用的算法和模型一样,但使用了部分人类专家数据。

五. MCTS的优缺点

MCTS能够非常聪明的去探索胜率较高的路径,和dfs这类暴力穷举算法比起来,可以花费较少的运算资源,就能达到不错的效果,尤其对于围棋这类每步棋都有200种左右选择的游戏,使用MCTS的效果非常显著。但与此同时也要指出,MCTS并不能保证一定找到最佳路径和着法。AlphaGo和李世石比赛就输了一盘,说明不一定能百分百找到最优解。不过论整体胜率,AlphaGo和AlphaGo Zero已远远超过了人类。既然围棋的变化(10的360次方)比宇宙中的原子还多,比起dfs或minimax等算法,使用MCTS还是非常有优势和有必要的。

相关推荐
SEU-WYL19 分钟前
基于深度学习的任务序列中的快速适应
人工智能·深度学习
OCR_wintone42121 分钟前
中安未来 OCR—— 开启高效驾驶证识别新时代
人工智能·汽车·ocr
matlabgoodboy31 分钟前
“图像识别技术:重塑生活与工作的未来”
大数据·人工智能·生活
不穿格子衬衫33 分钟前
常用排序算法(下)
c语言·开发语言·数据结构·算法·排序算法·八大排序
aqua353574235843 分钟前
蓝桥杯-财务管理
java·c语言·数据结构·算法
最近好楠啊1 小时前
Pytorch实现RNN实验
人工智能·pytorch·rnn
OCR_wintone4211 小时前
中安未来 OCR—— 开启文字识别新时代
人工智能·深度学习·ocr
学步_技术1 小时前
自动驾驶系列—全面解析自动驾驶线控制动技术:智能驾驶的关键执行器
人工智能·机器学习·自动驾驶·线控系统·制动系统
IFTICing1 小时前
【文献阅读】Attention Bottlenecks for Multimodal Fusion
人工智能·pytorch·python·神经网络·学习·模态融合
程序猿阿伟1 小时前
《C++游戏人工智能开发:开启智能游戏新纪元》
c++·人工智能·游戏