【算法与数据结构】491、LeetCode递增子序列

文章目录

所有的LeetCode题解索引,可以看这篇文章------【算法和数据结构】LeetCode题解

一、题目

二、解法

思路分析:本题和【算法与数据结构】78、90、LeetCode子集I, II中90.子集II问题有些类似,但是本题是找出数组中的递增子序列,不能对数组进行排序。因此在去重方面有所不同,本题去重使用了unordered_set无序集合这个类型进行记录使用过的元素。其余部分和子集II问题都类似。

程序如下:

cpp 复制代码
class Solution {
private:
	vector<vector<int>> result;
	vector<int> path;
	void backtracking(const vector<int>& nums, int startIndex) {
		// 不能排序,取数组的有序递增子集
		if (path.size() >= 2) {
			result.push_back(path);
		}
		unordered_set<int> uset;	// 去重的标志集合,用作本层元素的去重,uset不进入递归,不需要进行回溯操作
		for (int i = startIndex; i < nums.size(); i++) {
			// uset.find(nums[i]) != uset.end()是在uset里面寻找nums[i], 如果找到,则返回的索引!= uset.end(),则nums[i]这个元素已经使用过了
			if (!path.empty() && nums[i] < path.back() || uset.find(nums[i]) != uset.end() ) continue;	
			path.push_back(nums[i]);	// 处理节点		
			uset.insert(nums[i]);
			backtracking(nums, i + 1);	// 递归
			path.pop_back();			// 回溯
		}
	}
public:
	vector<vector<int>> findSubsequences(vector<int>& nums) {
		backtracking(nums, 0);
		return result;
	}
};

复杂度分析:

  • 时间复杂度: O ( n ∗ 2 n ) O(n*2^n) O(n∗2n)。
  • 空间复杂度: O ( n ) O(n) O(n)。

三、完整代码

cpp 复制代码
# include <iostream>
# include <string>
# include <vector>
# include <unordered_set>
using namespace std;

class Solution {
private:
	vector<vector<int>> result;
	vector<int> path;
	void backtracking(const vector<int>& nums, int startIndex) {
		// 不能排序,取数组的有序递增子集
		if (path.size() >= 2) {
			result.push_back(path);
		}
		unordered_set<int> uset;	// 去重的标志集合,用作本层元素的去重,uset不进入递归,不需要进行回溯操作
		for (int i = startIndex; i < nums.size(); i++) {
			// uset.find(nums[i]) != uset.end()是在uset里面寻找nums[i], 如果找到,则返回的索引!= uset.end(),则nums[i]这个元素已经使用过了
			if (!path.empty() && nums[i] < path.back() || uset.find(nums[i]) != uset.end() ) continue;	
			path.push_back(nums[i]);	// 处理节点		
			uset.insert(nums[i]);
			backtracking(nums, i + 1);	// 递归
			path.pop_back();			// 回溯
		}
	}
public:
	vector<vector<int>> findSubsequences(vector<int>& nums) {
		backtracking(nums, 0);
		return result;
	}
};

int main() {
	Solution s1;
	//vector<int> nums = { 4,4,3,2,1 };
	vector<int> nums = { 4, 7, 6, 7 };
	vector<vector<int>> result = s1.findSubsequences(nums);
	for (vector<vector<int>>::iterator it = result.begin(); it != result.end(); it++) {
		for (vector<int>::iterator jt = (*it).begin(); jt != (*it).end(); jt++) {
			cout << *jt << " ";
		}
		cout << endl;
	}
	system("pause");
	return 0;
}

end

相关推荐
少许极端35 分钟前
算法奇妙屋(五)-链表
数据结构·算法·链表
XISHI_TIANLAN1 小时前
【多模态学习】Q&A6: 什么是MOE架构?Router Z Loss函数是指什么?负载均衡损失(Load Balancing Loss)又是什么?
学习·算法·语言模型
木子.李3471 小时前
数据结构-算法C++(额外问题汇总)
数据结构·c++·算法
花心蝴蝶.1 小时前
API签名认证算法全解析
算法
兮山与2 小时前
算法6.0
算法
代码对我眨眼睛2 小时前
739. 每日温度 LeetCode 热题 HOT 100
算法·leetcode
程序员莫小特2 小时前
老题新解|计算2的N次方
开发语言·数据结构·算法·青少年编程·信息学奥赛一本通
wearegogog1233 小时前
基于块匹配的MATLAB视频去抖动算法
算法·matlab·音视频
十重幻想4 小时前
PTA6-1 使用函数求最大公约数(C)
c语言·数据结构·算法
大千AI助手5 小时前
蛙跳积分法:分子动力学模拟中的高效数值积分技术
算法·积分·数值积分·蛙跳积分法·牛顿力学系统·verlet积分算法