CV学习基础

脸部检测是基于图像的明暗变化模式进行判断,需要将图像先进行灰度化处理

马赛克处理需先将图像缩小然后夸大回原尺寸。

保存训练好的算法用joblib

进行以下操作时已经使用cv2.cvtColor()完成了灰度化

图像平滑化(模糊处理):cv2中的函数

cv2.blur()

cv2.medianBlur()

cv2.bilateralFilter()

cv2.GaussianBlur()

#cv2.GaussianBlur()的格式为

img=cv2.GaussianBlur(img,(ax,ay),sigma_x)

(ax,ay)为以像素为单位指定平滑化对象点的邻近范围大小,数值必须是奇数。sigma

_x是横向的标准偏差值,如果为0,则自动根据核的尺寸(即前面的ax,ay)进行计算

图像二值化(阈值处理):

ret,img = cv2.threshold(img,thresh,maxval,type)

img为灰度化后的图像,thresh指定阈值,maxval指定的是超出阈值时所赋予的值,第四个参数设置如何进行阈值处理,指定为THRESH_BINARY_INV时,大于阈值设为0,其他均设为maxval设定的数值。

轮廓检测函数

contours,hierachy = cv2.findContours(img,mode,method)

第一项参数是输入的图像,第二项参数是提取模式,第三项参数是指定轮廓近似方法,返回值是轮廓列表和层次信息。第二项参数具体数值如下:

常量 含义
cv2.RETR_LIST 简单检测轮廓
cv2.RETR_EXTERNAL 检测最外层
cv2.RETR_CCOMP 根据层次检测出第二级轮廓
cv2.RETR_TREE 检测所有轮廓,并保留层次

第三项参数的选择:

常量 含义
cv2.CHAIN_APPROX_NONE 保留轮廓上所有点
cv2.CHAIN_APPROX_SIMPLE 去除冗余点后再返回
相关推荐
lisw054 小时前
6G频段与5G频段有何不同?
人工智能·机器学习
双翌视觉10 小时前
双翌全自动影像测量仪:以微米精度打造智能化制造
人工智能·机器学习·制造
编程小白_正在努力中11 小时前
神经网络深度解析:从神经元到深度学习的进化之路
人工智能·深度学习·神经网络·机器学习
我不是QI13 小时前
周志华《机器学习---西瓜书》 一
人工智能·python·机器学习·ai
H***997613 小时前
月之暗面公开强化学习训练加速方法:训练速度暴涨97%,长尾延迟狂降93%
人工智能·深度学习·机器学习
长桥夜波13 小时前
机器学习日报20
人工智能·机器学习
Ma04071320 小时前
【机器学习】监督学习、无监督学习、半监督学习、自监督学习、弱监督学习、强化学习
人工智能·学习·机器学习
周杰伦_Jay1 天前
【 2025年必藏】8个开箱即用的优质开源智能体(Agent)项目
人工智能·机器学习·架构·开源
yLDeveloper1 天前
一只菜鸟学机器学习的日记:入门分布偏移
机器学习·dive into deep learning
xier_ran2 天前
深度学习:生成对抗网络(GAN)详解
人工智能·深度学习·机器学习·gan