如何显示标注的纯黑mask图

文章目录

前言

通常情况下,使用标注软件标注的标签图看起来都是纯黑的,因为mask图为单通道的灰度图,而灰度图一般要像素值大于128后,才会逐渐显白,255为白色。而标注的时候,不同类别的像素值是从1,2,3...这样的顺序,所以看起来是纯黑的。

一、二分类mask显示

若只是二分类,原本像素值就只有0和1的区分,那只需要将像素1转换为255即可显示白色,可使用inRange函数

c 复制代码
	cv::Mat img = cv::imread("C:/Users/WA.png",0);
	cv::Mat img_i;
	cv::inRange(img, 1, 1, img_i); // 上界和下界都为1,即只匹配值为1的像素;将值为1的像素设置为白色(255),其余像素为黑色(保持不变)
	cv::imshow("img", img);
	cv::imshow("img_i", img_i);

二、多分类mask显示

若存在多个类别,就需要给每个类别单独定义一种颜色。(彩色图是三通道的,mask图是单通道,所以这种操作也称为伪彩色映射)

代码如下(示例):

python 复制代码
import cv2
import numpy as np
from PIL import Image
import glob

color_map = np.zeros((256 * 3)).astype('uint8')
color_map[:3 * 13] = np.array([[0, 0, 0],   # 0像素还是得为0
                                  [41, 43, 204],  # 原像素值为1的
                                  [6, 128, 245],  # 原像素值为2的
                                  [36, 159, 67],
                                  [41, 43, 204],
                                  [190, 104, 145],
                                  [75, 86, 135],
                                  [195,120,219],
                                  [127, 127, 127],
                                  [18, 189, 187],
                                  [207, 190, 72],
                                  [233, 199, 178],
                                  [118, 187, 248]
                                  ],dtype='uint8').flatten()

def labeltocolor(mask):
    im=Image.fromarray(mask)
    im.putpalette(color_map)
    im=np.array(im.convert('RGB'))
    # cv2.imshow("1",im)
    # cv2.waitKey()
    # cv2.destroyAllWindows()
    return im


# 遍历文件夹中的所有图片
image_paths = glob.glob('C:/Users/Desktop/train01/01/mask/*.png')
idx = 0  # 当前图片索引
num_images = len(image_paths)  # 图片数量

for image_path in image_paths:
    # 加载单通道遮罩图(假设为灰度图)
    mask = cv2.imread(image_paths[idx], cv2.IMREAD_GRAYSCALE)

    # 将遮罩图像应用伪彩色映射
    mask_color = labeltocolor(mask)


    cv2.imshow('Result', mask_color)
    key = cv2.waitKey(0) 

    if key == ord('q'):  
        break
    elif key == ord('n'):  
        idx = (idx + 1) % num_images

cv2.destroyAllWindows()
相关推荐
青梅主码1 分钟前
麦肯锡联合QuantumBlack最新发布《2025年人工智能的现状:智能体、创新和转型》报告:32% 的企业预计会继续裁员
前端·人工智能·后端
CoovallyAIHub1 分钟前
基于SimCLR的自监督 YOLO:YOLOv5/8也能在低标注场景目标检测性能飙升
深度学习·算法·计算机视觉
冻感糕人~12 分钟前
Agent框架协议“三部曲”:MCP、A2A与AG-UI的协同演进
java·人工智能·学习·语言模型·大模型·agent·大模型学习
说私域15 分钟前
AI智能名片链动2+1模式S2B2C商城小程序在客服沟通中的应用与效果
人工智能·小程序
S***t71417 分钟前
深度学习迁移学习应用
人工智能·深度学习·迁移学习
程序员哈基耄18 分钟前
当AI遇见塔罗:现代生活中的自我探索新方式
人工智能·生活
lucky_syq24 分钟前
再谈向量数据库:AI时代的存储新引擎
大数据·数据库·人工智能
IT_陈寒1 小时前
Vue 3.4 性能优化实战:7个被低估的Composition API技巧让你的应用提速30%
前端·人工智能·后端
while(努力):进步1 小时前
人工智能与边缘计算结合在智能电网负荷预测与优化调度中的应用探索
人工智能·边缘计算
2501_941142131 小时前
边缘计算与5G结合在智慧交通信号优化与实时路况预测中的创新应用
人工智能·5g·边缘计算