多维时序 | MATLAB实现PSO-LSTM-Attention粒子群优化长短期记忆神经网络融合注意力机制的多变量时间序列预测

多维时序 | MATLAB实现PSO-LSTM-Attention粒子群优化长短期记忆神经网络融合注意力机制的多变量时间序列预测

目录

    • [多维时序 | MATLAB实现PSO-LSTM-Attention粒子群优化长短期记忆神经网络融合注意力机制的多变量时间序列预测](#多维时序 | MATLAB实现PSO-LSTM-Attention粒子群优化长短期记忆神经网络融合注意力机制的多变量时间序列预测)

预测效果





基本介绍

多维时序 | MATLAB实现PSO-LSTM-Attention粒子群优化长短期记忆神经网络融合注意力机制的多变量时间序列预测

模型描述

MATLAB实现PSO-LSTM-Attention粒子群优化长短期记忆神经网络融合注意力机制的多变量时间序列预测,用于处理时间序列数据;适用平台:Matlab 2023及以上

1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测;

2.主程序文件,运行即可;

3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获取数据和程序内容;

注意程序和数据放在一个文件夹,运行环境为Matlab2023b及以上。

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复MATLAB实现PSO-LSTM-Attention粒子群优化长短期记忆神经网络融合注意力机制的多变量时间序列预测获取。
clike 复制代码
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130471154

参考资料

1\] http://t.csdn.cn/pCWSp \[2\] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501 \[3\] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
_codemonster1 天前
深度学习实战(基于pytroch)系列(四十)长短期记忆(LSTM)从零开始实现
人工智能·深度学习·lstm
玖日大大1 天前
LSTM 深度解析:原理、实现与实战应用
人工智能·rnn·lstm
北京盛世宏博2 天前
档案馆空气质量联网监控趋势分析
人工智能·gru·lstm
非著名架构师2 天前
【光伏功率预测】EMD 分解 + PCA 降维 + LSTM 的联合建模与 Matlab 实现
人工智能·matlab·lstm·高精度光伏功率预测模型
代码小白的成长2 天前
Windows: 调试基于千万短视频预训练的视频分类模型(videotag_tsn_lstm)
人工智能·rnn·lstm
软件算法开发2 天前
基于跳蛛优化的LSTM深度学习网络模型(JSOA-LSTM)的一维时间序列预测算法matlab仿真
深度学习·matlab·lstm·一维时间序列预测·跳蛛优化·jsoa-lstm
_codemonster4 天前
深度学习实战(基于pytroch)系列(四十一)长短期记忆(LSTM)pytorch简洁实现
pytorch·深度学习·lstm
青云交5 天前
Java 大视界 -- Java 大数据机器学习模型在电商评论情感分析与产品口碑优化中的应用
机器学习·自然语言处理·lstm·情感分析·java 大数据·电商评论·产品口碑
DatGuy7 天前
Week 26: 深度学习补遗:LSTM 原理与代码复现
人工智能·深度学习·lstm
木头左7 天前
缺失值插补策略比较线性回归vs.相邻填充在LSTM输入层的性能差异分析
算法·线性回归·lstm