多维时序 | MATLAB实现PSO-LSTM-Attention粒子群优化长短期记忆神经网络融合注意力机制的多变量时间序列预测

多维时序 | MATLAB实现PSO-LSTM-Attention粒子群优化长短期记忆神经网络融合注意力机制的多变量时间序列预测

目录

    • [多维时序 | MATLAB实现PSO-LSTM-Attention粒子群优化长短期记忆神经网络融合注意力机制的多变量时间序列预测](#多维时序 | MATLAB实现PSO-LSTM-Attention粒子群优化长短期记忆神经网络融合注意力机制的多变量时间序列预测)

预测效果





基本介绍

多维时序 | MATLAB实现PSO-LSTM-Attention粒子群优化长短期记忆神经网络融合注意力机制的多变量时间序列预测

模型描述

MATLAB实现PSO-LSTM-Attention粒子群优化长短期记忆神经网络融合注意力机制的多变量时间序列预测,用于处理时间序列数据;适用平台:Matlab 2023及以上

1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测;

2.主程序文件,运行即可;

3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获取数据和程序内容;

注意程序和数据放在一个文件夹,运行环境为Matlab2023b及以上。

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复MATLAB实现PSO-LSTM-Attention粒子群优化长短期记忆神经网络融合注意力机制的多变量时间序列预测获取。
clike 复制代码
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
------------------------------------------------
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130471154

参考资料

1\] http://t.csdn.cn/pCWSp \[2\] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501 \[3\] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关推荐
木头左6 小时前
技术指标时空编码构建LSTM兼容的量化交易特征工程体系
人工智能·rnn·lstm
大连好光景2 天前
LSTM模型做分类任务2(PyTorch实现)
人工智能·pytorch·lstm
my烂笔头2 天前
长短期记忆网络(LSTM)入门
人工智能·机器学习·lstm
机器学习之心3 天前
BKA-Transformer-LSTM多变量时间序列预测Matlab实现
matlab·lstm·transformer·多变量时间序列预测
NCU_wander4 天前
rnn lstm transformer mamba
rnn·lstm·transformer
青云交4 天前
Java 大视界 -- 基于 Java 的大数据可视化在城市空气质量监测与污染溯源中的应用
java·spark·lstm·可视化·java 大数据·空气质量监测·污染溯源
青云交6 天前
Java 大视界 --Java 大数据机器学习模型在金融风险压力测试中的应用与验证
java·随机森林·机器学习·lstm·压力测试·联邦学习·金融风险
青云交7 天前
Java 大视界 -- 基于 Java 的大数据实时流处理在能源行业设备状态监测与故障预测中的应用
flink·lstm·设备状态监测·故障预测·实时流处理·java 大数据·能源行业
IT古董8 天前
【第七章:时间序列模型】2.时间序列统计模型与神经网络模型-(3)神经网络预测时间序列模型: 从RNN,LSTM到nbeats模型
rnn·神经网络·lstm
亚林瓜子10 天前
SpringBoot中使用tess4j进行OCR(在macos上面开发)
java·spring boot·macos·ocr·lstm·tess4j