机器学习中的Bagging思想

Bagging(Bootstrap Aggregating)是机器学习中一种集成学习方法,旨在提高模型的准确性和稳定性。Bagging的思想源自于Bootstrap采样技术,其基本原理如下:

  1. Bootstrap采样: Bagging的核心思想是通过对原始数据进行有放回的随机采样,生成多个与原始数据规模相同的"虚拟数据集"。这个过程允许在新的数据集中多次出现相同的样本,同时也可能导致某些样本在新的数据集中缺失。这种采样方法称为Bootstrap采样。

  2. 模型训练: 对于每个Bootstrap采样得到的数据集,使用相同的学习算法建立一个基本模型(通常是决策树)。由于每个模型都是在略有差异的数据集上训练的,因此它们之间会有一些差异。

  3. 集成预测: Bagging的关键是将所有基本模型的预测结果进行组合。对于回归问题,通常采用简单的平均方法,而对于分类问题,采用投票(voting)的方式,即每个模型投一票,最终预测结果由获得最多投票的类别确定。

Bagging的主要优点在于通过降低模型的方差,提高了整体模型的泛化能力。通过引入随机性和多样性,Bagging降低了模型对特定训练数据的敏感性,从而提高了模型对未见数据的适应能力。著名的Bagging算法包括随机森林(Random Forest)。

总体而言,Bagging思想是通过构建多个略有差异的模型,并将它们的结果组合起来,以获得更稳健、更具泛化能力的模型。

相关推荐
腾讯云开发者1 分钟前
TVP首场香港活动重磅启幕,AI出海变革风向如何把握?
人工智能
wasp5201 分钟前
Spring AI 代码分析(十)--Spring Boot集成
人工智能·spring boot·spring
AI即插即用9 分钟前
即插即用系列 | 2025 MambaNeXt-YOLO 炸裂登场!YOLO 激吻 Mamba,打造实时检测新霸主
人工智能·pytorch·深度学习·yolo·目标检测·计算机视觉·视觉检测
BagMM26 分钟前
DetLH论文阅读
人工智能·计算机视觉·目标跟踪
fundroid38 分钟前
Androidify:谷歌官方 AI + Android 开源示例应用
android·人工智能·开源
居然JuRan1 小时前
大模型瘦身术:量化与蒸馏技术全解析
人工智能
艾莉丝努力练剑1 小时前
【优选算法必刷100题】第031~32题(前缀和算法):连续数组、矩阵区域和
大数据·人工智能·线性代数·算法·矩阵·二维前缀和
不去幼儿园1 小时前
【启发式算法】灰狼优化算法(Grey Wolf Optimizer, GWO)详细介绍(Python)
人工智能·python·算法·机器学习·启发式算法
remaindertime1 小时前
基于Ollama和Spring AI:实现本地大模型对话与 RAG 功能
人工智能·后端·ai编程
y***54881 小时前
Vue语音识别开发
人工智能·语音识别