机器学习中的Bagging思想

Bagging(Bootstrap Aggregating)是机器学习中一种集成学习方法,旨在提高模型的准确性和稳定性。Bagging的思想源自于Bootstrap采样技术,其基本原理如下:

  1. Bootstrap采样: Bagging的核心思想是通过对原始数据进行有放回的随机采样,生成多个与原始数据规模相同的"虚拟数据集"。这个过程允许在新的数据集中多次出现相同的样本,同时也可能导致某些样本在新的数据集中缺失。这种采样方法称为Bootstrap采样。

  2. 模型训练: 对于每个Bootstrap采样得到的数据集,使用相同的学习算法建立一个基本模型(通常是决策树)。由于每个模型都是在略有差异的数据集上训练的,因此它们之间会有一些差异。

  3. 集成预测: Bagging的关键是将所有基本模型的预测结果进行组合。对于回归问题,通常采用简单的平均方法,而对于分类问题,采用投票(voting)的方式,即每个模型投一票,最终预测结果由获得最多投票的类别确定。

Bagging的主要优点在于通过降低模型的方差,提高了整体模型的泛化能力。通过引入随机性和多样性,Bagging降低了模型对特定训练数据的敏感性,从而提高了模型对未见数据的适应能力。著名的Bagging算法包括随机森林(Random Forest)。

总体而言,Bagging思想是通过构建多个略有差异的模型,并将它们的结果组合起来,以获得更稳健、更具泛化能力的模型。

相关推荐
mortimer7 分钟前
Whisper断句不够好?用AI LLM和结构化数据打造完美字幕
人工智能·openai
计算生物前沿41 分钟前
单细胞分析教程 | (二)标准化、特征选择、降为、聚类及可视化
人工智能·机器学习·聚类
kyle~1 小时前
Opencv---深度学习开发
人工智能·深度学习·opencv·计算机视觉·机器人
运器1231 小时前
【一起来学AI大模型】PyTorch DataLoader 实战指南
大数据·人工智能·pytorch·python·深度学习·ai·ai编程
超龄超能程序猿1 小时前
(5)机器学习小白入门 YOLOv:数据需求与图像不足应对策略
人工智能·python·机器学习·numpy·pandas·scipy
卷福同学1 小时前
【AI编程】AI+高德MCP不到10分钟搞定上海三日游
人工智能·算法·程序员
帅次2 小时前
系统分析师-计算机系统-输入输出系统
人工智能·分布式·深度学习·神经网络·架构·系统架构·硬件架构
AndrewHZ2 小时前
【图像处理基石】如何入门大规模三维重建?
人工智能·深度学习·大模型·llm·三维重建·立体视觉·大规模三维重建
5G行业应用2 小时前
【赠书福利,回馈公号读者】《智慧城市与智能网联汽车,融合创新发展之路》
人工智能·汽车·智慧城市
悟空胆好小2 小时前
分音塔科技(BABEL Technology) 的公司背景、股权构成、产品类型及技术能力的全方位解读
网络·人工智能·科技·嵌入式硬件