机器学习中的Bagging思想

Bagging(Bootstrap Aggregating)是机器学习中一种集成学习方法,旨在提高模型的准确性和稳定性。Bagging的思想源自于Bootstrap采样技术,其基本原理如下:

  1. Bootstrap采样: Bagging的核心思想是通过对原始数据进行有放回的随机采样,生成多个与原始数据规模相同的"虚拟数据集"。这个过程允许在新的数据集中多次出现相同的样本,同时也可能导致某些样本在新的数据集中缺失。这种采样方法称为Bootstrap采样。

  2. 模型训练: 对于每个Bootstrap采样得到的数据集,使用相同的学习算法建立一个基本模型(通常是决策树)。由于每个模型都是在略有差异的数据集上训练的,因此它们之间会有一些差异。

  3. 集成预测: Bagging的关键是将所有基本模型的预测结果进行组合。对于回归问题,通常采用简单的平均方法,而对于分类问题,采用投票(voting)的方式,即每个模型投一票,最终预测结果由获得最多投票的类别确定。

Bagging的主要优点在于通过降低模型的方差,提高了整体模型的泛化能力。通过引入随机性和多样性,Bagging降低了模型对特定训练数据的敏感性,从而提高了模型对未见数据的适应能力。著名的Bagging算法包括随机森林(Random Forest)。

总体而言,Bagging思想是通过构建多个略有差异的模型,并将它们的结果组合起来,以获得更稳健、更具泛化能力的模型。

相关推荐
reddingtons32 分钟前
Illustrator 3D Mockup:零建模,矢量包装一键“上架”实拍
人工智能·ui·3d·aigc·illustrator·设计师·平面设计
孟祥_成都35 分钟前
前端角度学 AI - 15 分钟入门 Python
前端·人工智能
Java中文社群1 小时前
太顶了!全网最全的600+图片生成玩法!
人工智能
阿里云大数据AI技术1 小时前
EMR AI 助手开启公测:用 AI 重塑大数据运维,更简单、更智能
人工智能
言之。1 小时前
AI时代的UI发展
人工智能·ui
拖拖7651 小时前
从“死”文档到“活”助手:Paper2Agent 如何将科研论文一键转化为可执行 AI
人工智能
攻城狮7号1 小时前
告别显存焦虑:阿里开源 Z-Image 如何用 6B 参数立足AI 绘画时代
人工智能·ai 绘画·qwen-image·z-image-turbo·阿里开源模型
Christo31 小时前
ICML-2019《Optimal Transport for structured data with application on graphs》
人工智能·算法·机器学习·数据挖掘
阿杰学AI1 小时前
AI核心知识24——大语言模型之AI 幻觉(简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·hallucination·ai幻觉
AI_56781 小时前
AI知识库如何重塑服务体验
大数据·人工智能