机器学习中的Bagging思想

Bagging(Bootstrap Aggregating)是机器学习中一种集成学习方法,旨在提高模型的准确性和稳定性。Bagging的思想源自于Bootstrap采样技术,其基本原理如下:

  1. Bootstrap采样: Bagging的核心思想是通过对原始数据进行有放回的随机采样,生成多个与原始数据规模相同的"虚拟数据集"。这个过程允许在新的数据集中多次出现相同的样本,同时也可能导致某些样本在新的数据集中缺失。这种采样方法称为Bootstrap采样。

  2. 模型训练: 对于每个Bootstrap采样得到的数据集,使用相同的学习算法建立一个基本模型(通常是决策树)。由于每个模型都是在略有差异的数据集上训练的,因此它们之间会有一些差异。

  3. 集成预测: Bagging的关键是将所有基本模型的预测结果进行组合。对于回归问题,通常采用简单的平均方法,而对于分类问题,采用投票(voting)的方式,即每个模型投一票,最终预测结果由获得最多投票的类别确定。

Bagging的主要优点在于通过降低模型的方差,提高了整体模型的泛化能力。通过引入随机性和多样性,Bagging降低了模型对特定训练数据的敏感性,从而提高了模型对未见数据的适应能力。著名的Bagging算法包括随机森林(Random Forest)。

总体而言,Bagging思想是通过构建多个略有差异的模型,并将它们的结果组合起来,以获得更稳健、更具泛化能力的模型。

相关推荐
机器学习之心11 分钟前
MATLAB基于近红外光谱检测的菠萝含水率预测(多种预处理+PLS)
人工智能·算法·matlab·近红外光谱检测
sunxunyong21 分钟前
openwork实测
人工智能
isNotNullX24 分钟前
什么是可信数据空间?为什么可信数据空间是数据共享的关键?
大数据·人工智能·数据安全·数据空间
星爷AG I25 分钟前
9-1 视觉通路(AGI基础理论)
人工智能·agi
Ro Jace26 分钟前
读文献到什么程度才能解决问题以及撰写论文?
人工智能·雷达信号分选
weixin_3077791327 分钟前
面向通用矩阵乘法(GEMM)负载的GPU建模方法:原理、实现与多场景应用价值
运维·人工智能·线性代数·矩阵·gpu算力
2301_7807896629 分钟前
2025年UDP洪水攻击防护实战全解析:从T级流量清洗到AI智能防御
服务器·网络·人工智能·网络协议·安全·web安全·udp
Promise微笑29 分钟前
Geo优化排名因素深度专访:两大核心与四轮驱动的信任重构
人工智能·重构
2501_9413331030 分钟前
YOLO11-EUCB-SC实现排水管道缺陷检测_从零开始的智能检测系统搭建指南
人工智能·计算机视觉·目标跟踪
言之。32 分钟前
人工智能领域前沿研究课题与长期发展难题分析报告
人工智能