机器学习中的Bagging思想

Bagging(Bootstrap Aggregating)是机器学习中一种集成学习方法,旨在提高模型的准确性和稳定性。Bagging的思想源自于Bootstrap采样技术,其基本原理如下:

  1. Bootstrap采样: Bagging的核心思想是通过对原始数据进行有放回的随机采样,生成多个与原始数据规模相同的"虚拟数据集"。这个过程允许在新的数据集中多次出现相同的样本,同时也可能导致某些样本在新的数据集中缺失。这种采样方法称为Bootstrap采样。

  2. 模型训练: 对于每个Bootstrap采样得到的数据集,使用相同的学习算法建立一个基本模型(通常是决策树)。由于每个模型都是在略有差异的数据集上训练的,因此它们之间会有一些差异。

  3. 集成预测: Bagging的关键是将所有基本模型的预测结果进行组合。对于回归问题,通常采用简单的平均方法,而对于分类问题,采用投票(voting)的方式,即每个模型投一票,最终预测结果由获得最多投票的类别确定。

Bagging的主要优点在于通过降低模型的方差,提高了整体模型的泛化能力。通过引入随机性和多样性,Bagging降低了模型对特定训练数据的敏感性,从而提高了模型对未见数据的适应能力。著名的Bagging算法包括随机森林(Random Forest)。

总体而言,Bagging思想是通过构建多个略有差异的模型,并将它们的结果组合起来,以获得更稳健、更具泛化能力的模型。

相关推荐
予枫的编程笔记12 分钟前
【Java进阶】掌握布隆过滤器,守住高并发系统的第一道防线
人工智能
过期的秋刀鱼!12 分钟前
机器学习-过拟合&欠拟合问题
人工智能·机器学习
万事可爱^15 分钟前
LangChain v1.0学习笔记(4)—— 核心组件Models
人工智能·笔记·学习·langchain·大模型
Frdbio18 分钟前
环腺苷酸(cAMP)ELISA检测试剂盒
linux·人工智能·python
dazzle20 分钟前
计算机视觉处理(OpenCV基础教学(二十二):霍夫变换技术详解)
人工智能·opencv·计算机视觉
狗狗学不会29 分钟前
RK3588 极致性能:使用 Pybind11 封装 MPP 实现 Python 端 8 路视频硬件解码
人工智能·python·音视频
Aevget29 分钟前
Kendo UI for jQuery 2025 Q4新版亮点 - AI 助手持续加持,主力开发更智能
人工智能·ui·jquery·界面控件·kendo ui
北京耐用通信30 分钟前
耐达讯自动化CANopen转Profibus网关在矿山机械RFID读写器应用中的技术分析
人工智能·科技·物联网·自动化·信息与通信
飞睿科技31 分钟前
UWB技术在机器人领域的创新应用与前景
网络·人工智能·机器人·定位技术·uwb技术
空山新雨后、33 分钟前
RAG:搜索引擎与大模型的完美融合
人工智能·搜索引擎·rag