机器学习中的Bagging思想

Bagging(Bootstrap Aggregating)是机器学习中一种集成学习方法,旨在提高模型的准确性和稳定性。Bagging的思想源自于Bootstrap采样技术,其基本原理如下:

  1. Bootstrap采样: Bagging的核心思想是通过对原始数据进行有放回的随机采样,生成多个与原始数据规模相同的"虚拟数据集"。这个过程允许在新的数据集中多次出现相同的样本,同时也可能导致某些样本在新的数据集中缺失。这种采样方法称为Bootstrap采样。

  2. 模型训练: 对于每个Bootstrap采样得到的数据集,使用相同的学习算法建立一个基本模型(通常是决策树)。由于每个模型都是在略有差异的数据集上训练的,因此它们之间会有一些差异。

  3. 集成预测: Bagging的关键是将所有基本模型的预测结果进行组合。对于回归问题,通常采用简单的平均方法,而对于分类问题,采用投票(voting)的方式,即每个模型投一票,最终预测结果由获得最多投票的类别确定。

Bagging的主要优点在于通过降低模型的方差,提高了整体模型的泛化能力。通过引入随机性和多样性,Bagging降低了模型对特定训练数据的敏感性,从而提高了模型对未见数据的适应能力。著名的Bagging算法包括随机森林(Random Forest)。

总体而言,Bagging思想是通过构建多个略有差异的模型,并将它们的结果组合起来,以获得更稳健、更具泛化能力的模型。

相关推荐
新缸中之脑14 分钟前
为什么我选 Codex
人工智能
yumgpkpm16 分钟前
2026软件:白嫖,开源,外包,招标,晚进场(2025年下半年),数科,AI...中国的企业软件产业出路
大数据·人工智能·hadoop·算法·kafka·开源·cloudera
witAI23 分钟前
**AI漫剧制作工具2025推荐,零成本实现专业级动画创作*
人工智能·python
冬奇Lab27 分钟前
一天一个开源项目(第12篇):SoulX-Podcast - 多轮对话式播客生成,让AI语音更自然真实
人工智能·开源
风栖柳白杨33 分钟前
【语音识别】一些音频的使用方法
人工智能·音视频·语音识别
xixixi7777733 分钟前
今日 AI 、通信、安全行业前沿日报(2026 年 2 月 4 日,星期三)
大数据·人工智能·安全·ai·大模型·通信·卫星通信
LucDelton38 分钟前
模型微调思路
人工智能·深度学习·机器学习
寻道码路38 分钟前
【GitHub开源AI精选】WhisperX:70倍实时语音转录、革命性词级时间戳与多说话人分离技术
人工智能·开源·github
小王不爱笑1321 小时前
LangChain4J 整合多 AI 模型核心实现步骤
java·人工智能·spring boot
码农三叔1 小时前
(9-3)电源管理与能源系统:充电与扩展能源方案
人工智能·嵌入式硬件·机器人·能源·人形机器人