聊聊Flink必知必会(五)

  1. 聊聊Flink的必知必会(三)
  2. 聊聊Flink必知必会(四)

从源码中,根据关键的代码,梳理一下Flink中的时间与窗口实现逻辑。

WindowedStream

对数据流执行keyBy()操作后,再调用window()方法,就会返回WindowedStream,表示分区后又加窗的数据流。如果数据流没有经过分区,直接调用window()方法则会返回AllWindowedStream

如下:

java 复制代码
// 构造函数
public WindowedStream(KeyedStream<T, K> input, WindowAssigner<? super T, W> windowAssigner) {
    this.input = input;
    this.builder =
    new WindowOperatorBuilder<>(
    windowAssigner,
    windowAssigner.getDefaultTrigger(input.getExecutionEnvironment()),
    input.getExecutionConfig(),
    input.getType(),
    input.getKeySelector(),
    input.getKeyType());
}
        
// KeyedStream类型,表示被加窗的输入流。
private final KeyedStream<T, K> input;

// 用于构建WindowOperator,最终会生成windowAssigner,Evictor,Trigger
private final WindowOperatorBuilder<T, K, W> builder;

在这里面还涉及到一些窗口的基本计算算子,比如reduce,aggregate,apply,process,sum等等.

窗口相关模型的实现

Window

Window类是Flink中对窗口的抽象。它是一个抽象类,包含抽象方法maxTimestamp(),用于获取属于该窗口的最大时间戳。

TimeWindow类是其子类。包含了窗口的start,end,offset等时间概念字段,这里会计算窗口的起始时间:

java 复制代码
// 构造函数
public TimeWindow(long start, long end) {
    this.start = start;
    this.end = end;
}

// timestamp:获取窗口启动时的第一个时间戳epoch毫秒
public static long getWindowStartWithOffset(long timestamp, long offset, long windowSize) {
    final long remainder = (timestamp - offset) % windowSize;
    // handle both positive and negative cases
    if (remainder < 0) {
        return timestamp - (remainder + windowSize);
    } else {
        return timestamp - remainder;
    }
}

WindowAssigner

WindowAssigner表示窗口分配器,用来把元素分配到零个或多个窗口(Window对象)中。它是一个抽象类,其中重要的抽象方法为assignWindows()方法,用来给元素分配窗口。

Flink有多种类型的窗口,如Tumbling Window、Sliding Window等。各种类型的窗口又分为基于事件时间或处理时间的窗口。WindowAssigner的实现类就对应着具体类型的窗口。

SlidingEventTimeWindows是WindowAssigner的另一个实现类,表示基于事件时间的Sliding Window。它有3个long类型的字段size、slide和offset,分别表示窗口的大小、滑动的步长和窗口起始位置的偏移量。它对assignWindows()方法的实现如下:

java 复制代码
@Override
public Collection<TimeWindow> assignWindows(
        Object element, long timestamp, WindowAssignerContext context) {
        // Long.MIN_VALUE is currently assigned when no timestamp is present
    if (timestamp > Long.MIN_VALUE) {
        if (staggerOffset == null) {
            staggerOffset =
                    windowStagger.getStaggerOffset(context.getCurrentProcessingTime(), size);
        }
        long start =
                TimeWindow.getWindowStartWithOffset(
                        timestamp, (globalOffset + staggerOffset) % size, size);
        // 返回构建好起止时间的TimeWindow
        return Collections.singletonList(new TimeWindow(start, start + size));
    } else {
        throw new RuntimeException(
                "Record has Long.MIN_VALUE timestamp (= no timestamp marker). "
                        + "Is the time characteristic set to 'ProcessingTime', or did you forget to call "
                        + "'DataStream.assignTimestampsAndWatermarks(...)'?");
    }
}

设置窗口触发器Trigger

java 复制代码
@Override
public Trigger<Object, TimeWindow> getDefaultTrigger(StreamExecutionEnvironment env) {
    return EventTimeTrigger.create();
}

WindowAssigner与其主要实现类的关系如下:

这些类的含义分别如下

  • GlobalWindows:将所有元素分配进同一个窗口的全局窗口分配器。
  • SlidingEventTimeWindows:基于事件时间的滑动窗口分配器。
  • SlidingProcessingTimeWindows:基于处理时间的滑动窗口分配器。
  • TumblingEventTimeWindows:基于事件时间的滚动窗口分配器。
  • TumblingProcessingTimeWindows:基于处理时间的滚动窗口分配器。
  • EventTimeSessionWindows:基于事件时间的会话窗口分配器。
  • ProcessingTimeSessionWindows:基于处理时间的会话窗口分配器。

Trigger

Trigger表示窗口触发器。它是一个抽象类,主要定义了下面3个方法用于确定窗口何时触发计算:

java 复制代码
// 每个元素到来时触发
public abstract TriggerResult onElement(T element, long timestamp, W window, TriggerContext ctx) throws Exception;
// 处理时间的定时器触发时
public abstract TriggerResult onProcessingTime(long time, W window, TriggerContext ctx) throws Exception;
// 事件时间的定时器触发时调用
public abstract TriggerResult onEventTime(long time, W window, TriggerContext ctx) throws Exception;

这3个方法的返回结果为TriggerResult对象。TriggerResult是一个枚举类,包含两个boolean类型的字段fire和purge,分别表示窗口是否触发计算和窗口内的元素是否需要清空。

java 复制代码
CONTINUE(false, false),
FIRE_AND_PURGE(true, true),
FIRE(true, false),
PURGE(false, true);

TriggerResult(boolean fire, boolean purge) {
    this.purge = purge;
    this.fire = fire;
}

窗口触发器的实现由用户根据业务需求自定义。Flink默认基于事件时间的触发器为EventTimeTrigger,其三个方法处理如下

java 复制代码
@Override
public TriggerResult onElement(
        Object element, long timestamp, TimeWindow window, TriggerContext ctx)
        throws Exception {
    if (window.maxTimestamp() <= ctx.getCurrentWatermark()) {
        // 如果水印已经超过窗口,则立即触发
        return TriggerResult.FIRE;
    } else {
        // 注册事件时间定时器
        ctx.registerEventTimeTimer(window.maxTimestamp());
        return TriggerResult.CONTINUE;
    }
}

@Override
public TriggerResult onEventTime(long time, TimeWindow window, TriggerContext ctx) {
    return time == window.maxTimestamp() ? TriggerResult.FIRE : TriggerResult.CONTINUE;
}

/*
 * 处理时间,窗口不触发计算也不清空内部元素。
 */
@Override
public TriggerResult onProcessingTime(long time, TimeWindow window, TriggerContext ctx)
        throws Exception {
    return TriggerResult.CONTINUE;
}

Trigger与其主要实现类的继承关系

这些类的含义如下

  • CountTrigger:元素数达到设置的个数时触发计算的触发器。
  • DeltaTrigger:基于DeltaFunction和设置的阈值触发计算的触发器。
  • EventTimeTrigger:基于事件时间的触发器。
  • ProcessingTimeTrigger:基于处理时间的触发器。
  • PurgingTrigger:可包装其他触发器的清空触发器。
  • ContinuousEventTimeTrigger:基于事件时间并按照一定的时间间隔连续触发计算的触发器。
  • ContinuousProcessingTimeTrigger:基于处理时间并按照一定的时间间隔连续触发计算的触发器。

windowOperator

WindowedStream的构造函数中,会生成WindowOperatorBuilder,该类可以返回WindowOperator,这两个类负责窗口分配器、窗口触发器和窗口剔除器这些组件在运行时的协同工作。

对于WindowOperator,除了窗口分配器和窗口触发器的相关字段,可以先了解下面两个字段。

java 复制代码
// StateDescriptor类型,表示窗口状态描述符。
private final StateDescriptor<? extends AppendingState<IN, ACC>, ?> windowStateDescriptor;

// 表示窗口的状态,窗口内的元素都在其中维护。
private transient InternalAppendingState<K, W, IN, ACC, ACC> windowState;

窗口中的元素并没有保存在Window对象中,而是维护在windowState中。windowStateDescriptor则是创建windowState所需用到的描述符。

当有元素到来时,会调用WindowOperator的processElement()方法:

java 复制代码
public void processElement(StreamRecord<IN> element) throws Exception {
    // 分配窗口
    final Collection<W> elementWindows = windowAssigner.assignWindows(
        element.getValue(), element.getTimestamp(), windowAssignerContext);
            ...
        if (windowAssigner instanceof MergingWindowAssigner) { // Session Window的情况
            ...
        } else {
            for (W window: elementWindows) { // 非Session Window的情况
                ...
                // 将Window对象设置为namespace并添加元素到windowState中
                windowState.setCurrentNamespace(window);
                windowState.add(element.getValue());
                triggerContext.key = key;
                triggerContext.window = window;
                // 获取TriggerResult,确定接下来是否需要触发计算或清空窗口
                TriggerResult triggerResult = triggerContext.onElement(element);
                if (triggerResult.isFire()) {
                    ACC contents = windowState.get();
                    if (contents == null) {
                        continue;
                    }
                    // 触发计算
                    emitWindowContents(window, contents);
                }
                if (triggerResult.isPurge()) {
                    // 清空窗口
                    windowState.clear();
                }
                ...
            }
        }
    ...
}

在处理时间或事件时间的定时器触发时,会调用WindowOperator的onProcessingTime()方法或onEventTime()方法,其中的逻辑与onElement()方法的大同小异。

Watermarks

水位线(watermark)是选用事件时间来进行数据处理时特有的概念。它的本质就是时间戳,从上游流向下游,表示系统认为数据中的事件时间在该时间戳之前的数据都已到达。

Flink中,Watermark类表示水位。

java 复制代码
/** Creates a new watermark with the given timestamp in milliseconds. */
public Watermark(long timestamp) {
    this.timestamp = timestamp;
}

watermark的生成有两种方式,这里不赘述,主要讲述下基于配置的策略生成watermark的方式。如下的代码是比较常见的配置:

java 复制代码
// 分配事件时间与水印
.assignTimestampsAndWatermarks(
        // forBoundedOutOfOrderness 会根据事件的时间戳和允许的最大乱序时间生成水印。
        // Duration 设置了最大乱序时间为1秒。这意味着 Flink 将允许在这1秒的时间范围内的事件不按照事件时间的顺序到达,这个时间段内的事件会被认为是"有序的"。
        WatermarkStrategy.<Event>forBoundedOutOfOrderness(Duration.ofSeconds(1))
        // 设置事件时间分配器,从Event对象中提取时间戳作为事件时间
        .withTimestampAssigner(new SerializableTimestampAssigner<Event>() {
            @Override
            public long extractTimestamp(Event element, long recordTimestamp) {
                return element.timestamp;
            }
        }));

在Flink内部,会根据配置的策略调用BoundedOutOfOrdernessWatermarks生成watermark。该类的代码如下:

java 复制代码
public class BoundedOutOfOrdernessWatermarks<T> implements WatermarkGenerator<T> {

    /** The maximum timestamp encountered so far. */
    private long maxTimestamp;

    /** The maximum out-of-orderness that this watermark generator assumes. */
    private final long outOfOrdernessMillis;

    /**
     * Creates a new watermark generator with the given out-of-orderness bound.
     *
     * @param maxOutOfOrderness The bound for the out-of-orderness of the event timestamps.
     */
    public BoundedOutOfOrdernessWatermarks(Duration maxOutOfOrderness) {
        checkNotNull(maxOutOfOrderness, "maxOutOfOrderness");
        checkArgument(!maxOutOfOrderness.isNegative(), "maxOutOfOrderness cannot be negative");

        this.outOfOrdernessMillis = maxOutOfOrderness.toMillis();

        // start so that our lowest watermark would be Long.MIN_VALUE.
        this.maxTimestamp = Long.MIN_VALUE + outOfOrdernessMillis + 1;
    }

    // ------------------------------------------------------------------------

    @Override
    public void onEvent(T event, long eventTimestamp, WatermarkOutput output) {
        // 每条数据都会更新最大值
        maxTimestamp = Math.max(maxTimestamp, eventTimestamp);
    }

    @Override
    public void onPeriodicEmit(WatermarkOutput output) {
        // 发送 watermark 逻辑
        output.emitWatermark(new Watermark(maxTimestamp - outOfOrdernessMillis - 1));
    }
}

onEvent决定每次事件都会取得最大的事件时间更新;onPeriodicEmit则是周期性的更新并传递到下游。

AbstractStreamOperator

WatermarkGenerator接口的调用是在AbstractStreamOperator抽象类的子类TimestampsAndWatermarksOperator中。其生命周期open函数与每个数据到来的处理函数processElement,如下:

java 复制代码
@Override
public void open() throws Exception {
    super.open();

    timestampAssigner = watermarkStrategy.createTimestampAssigner(this::getMetricGroup);
    watermarkGenerator =
            emitProgressiveWatermarks
                    ? watermarkStrategy.createWatermarkGenerator(this::getMetricGroup)
                    : new NoWatermarksGenerator<>();

    wmOutput = new WatermarkEmitter(output);

    watermarkInterval = getExecutionConfig().getAutoWatermarkInterval();
    if (watermarkInterval > 0 && emitProgressiveWatermarks) {
        final long now = getProcessingTimeService().getCurrentProcessingTime();
        getProcessingTimeService().registerTimer(now + watermarkInterval, this);
    }
}

@Override
public void processElement(final StreamRecord<T> element) throws Exception {
    final T event = element.getValue();
    final long previousTimestamp =
            element.hasTimestamp() ? element.getTimestamp() : Long.MIN_VALUE;
    // 从分配器中提取事件时间戳
    final long newTimestamp = timestampAssigner.extractTimestamp(event, previousTimestamp);

    element.setTimestamp(newTimestamp);
    output.collect(element);
    // 调用水印生成器
    watermarkGenerator.onEvent(event, newTimestamp, wmOutput);
}

从方法的入参可以看出来 flink 算子间的数据流动是 StreamRecord 对象。它对数据的处理逻辑是什么都不做直接向下游发送,然后调用 onEvent 记录最大时间戳,也就是说:flink 是先发送数据再生成 watermark,watermark 永远在生成它的数据之后。

总结

上面的一系列相关代码,只是冰山一角,暂时只是把关键涉及到的部分捋了一下。最后画个图,展示其大致思路。

参考:

Flink Watermark 源码解析

相关推荐
宝哥大数据6 小时前
Flink Joins
flink
Java 第一深情9 小时前
零基础入门Flink,掌握基本使用方法
大数据·flink·实时计算
我的K84099 小时前
Flink整合Hudi及使用
linux·服务器·flink
老周聊架构1 天前
聊聊Flink:Flink中的时间语义和Watermark详解
大数据·flink
high20111 天前
【Apache Paimon】-- 5 -- Flink 向 Paimon 表写入数据
linux·flink·apache·paimon
别这么骄傲1 天前
Flink Lookup Join(维表 Join)
大数据·flink·linq
出发行进1 天前
Flink错误:一historyserver无法启动,二存在的文件会报错没有那个文件或目录
大数据·linux·hadoop·flink·虚拟机
袖清暮雨2 天前
3_Flink CDC
大数据·flink
我的K84092 天前
Flink CDC的安装配置
大数据·flink
老周聊架构3 天前
聊聊Flink:Flink的分区机制
大数据·flink