PyTorch深度学习原理与实现

PyTorch深度学习原理与实现

1. 引言

深度学习发展历程

  1. 感知机网络(解决线性可分问题,20世纪40年代)

  2. BP神经网络(解决线性不可分问题,20世纪80年代)

  3. 深度神经网络(海量图片分类,2010年左右)

    常见深度神经网络:CNN、RNN、LSTM、GRU、GAN、DBN、RBM ......

深度应用领域

  1. 计算机视觉

  2. 语音识别

  3. 自然语言处理

  4. 人机博弈

深度学习、机器学习以及人工智能

深度学习VS传统机器学习

深度神经网络 VS 浅层神经网络

2. 卷积神经网络CNN

BP神经网络缺陷

  1. 不能移动

  2. 不能变形

  3. 运算量大

解决办法

  1. 大量物体位于不同位置的数据训练

  2. 增加网络的隐藏层个数。

  3. 权值共享(不同位置拥有相同权值)

卷积神经网络结构[深度学习(DEEP LEARNING)]

covolutional layer(卷积)、ReLu layer(非线性映射)、pooling layer(池化)、

fully connected layer(全连接)、output(输出)的组合,例如下图所示的结构。

全连接与局部连接(权值共享)

在CNN中,先选择一个局部区域(filter),用这个局部区域去扫描整张图片。 局部区域所圈起来的所有节点会被连接到下一层的一个节点上。

2.1 卷积层-权值共享

2.2 非线性映射ReLU

非线性映射(Rectified Linear Units)

和前馈神经网络一样,经过线性组合和偏移后,会加入非线性增强模型的拟合能力。

经过线性组合和偏移后,会加入非线性增强模型的拟合能力,将卷积所得的Feature Map经过ReLU变换。

下图函数解释:++(小于零部分为零,大于零部分等于它本身)++

2.3 池化(pooling)

python 复制代码
import matplotlib.pyplot as plt
import torch

# 读取照片
image = plt.imread('_5_PyTorch深度学习/8.jpg')
# 将照片转为卷积层能接受的形式
image = image.reshape([-1, 1, 28, 28])

# 构建卷积层
# in_channels通道,当前灰度图片,通道为1; out_channels为过滤层filter的个数; kernel_size为过滤层纬度 5×5
conv2d = torch.nn.Conv2d(in_channels=1, out_channels=32, kernel_size=5)
# 执行卷积操作
    result_conv = conv2d(torch.tensor(image, dtype=torch.float32))

# 卷积可视化
plt.figure(figsize=(10, 8))  # 创建一张画布
for i in range(20):
    plt.subplot(4, 5, i+1)
    plt.imshow(result_conv.data.numpy()[0, i, :, :], cmap='gray')   # 绘制子图
    plt.axis('off')   # 关闭坐标轴
plt.show()
# 构建池化层
# kernel_size过滤层纬度 2×2 每次跳转间隔
max_pool2d = torch.nn.MaxPool2d(kernel_size=2, stride=2)
# 执行池化操作
result_pool = max_pool2d(result_conv)
# 池化可视化
plt.figure(figsize=(10, 8))  # 创建一张画布
for i in range(20):
    plt.subplot(4, 5, i+1)
    plt.imshow(result_pool.data.numpy()[0, i, :, :], cmap='gray')   # 绘制子图
    plt.axis('off')   # 关闭坐标轴
plt.show()

原图:

第一次卷积结果:

第一次池化结果:

2.4 全连接层

卷积-->池化-->卷积-->池化-->全连接-->全连接-->高斯连接

输入 32×32

-> 通过6个不同的filter(5×5)卷积后 -> 6@28×28

-> 池化后 -> 6@14×14

-> 通过16个不同的filter(5×5)卷积后 -> 16@10×10

-> 池化后 -> 6@5×5

-> 全连接

3. 循环神经网络RNN

传统神经网络结构

  • 对一般的神经网络,无论是arrive Beijing还是leave Beijing,Beijing作为BP神经网络的输入时,输出的都是Destination

  • Input 一样的内容,Output就是一样的内容

  • **我们希望神经网络有记忆,记得 ** Beijing 前的 arrive 或者 leave

3.1 隐状态(Hidden State)h

3.2 输出状态

3.3 随时间反向传播(BPTT)算法


3.4 N VS 1 RNN结构

n个输入一个输出

3.5 1 VS N RNN结构

1个输入n个输出

3.6 N vs M

n个输入m个输出

4. 长短时记忆网络LSTM

在 RNN 中,因为通常前期的层会因为梯度消失而停止学习,RNN 会忘记它在更长的序列中看到的东西,从而只拥有短期记忆。

4.1 遗忘门(forget gate)遗忘或保存

4.2 输入门(input gate)更新单元状态

4.3 单元状态

4.4 输出门(output gate)

决定下一个隐藏状态

4.5 示例

5. 利用RNN&LSTM实现手写数字识别

任务实现

  1. 加载数据

  2. 数据加工

  3. 构建模型(搭建网络)

  4. 模型配置

  5. 模型训练

  6. 性能验证

python 复制代码
import matplotlib.pyplot as plt
import torch

# 读取照片
image = plt.imread('_5_PyTorch深度学习/8.jpg')

# 将照片转为卷积层能接受的形式
image = image.reshape([-1, 28, 28])

# 构建LSTM
# 一个序列放进去,序列中一个向量中元素的个数 ,input_size输入数据的个数
# hidden_size 设置神经元个数
# batch_first 样本个数在第一位
rnn = torch.nn.LSTM(input_size=28, hidden_size=100, batch_first=True)

# 执行LSTM
output, (_, _) = rnn(torch.tensor(image, dtype=torch.float32))

plt.imshow(output.data.numpy()[0].T, cmap='gray')
plt.show()
python 复制代码
import numpy as np
import torch

# 1. 加载数据
mnist = np.load('_5_PyTorch深度学习/mnist.npz', allow_pickle=True)  # 读取数据
mnist.files
X_train, y_train, X_test, y_test = mnist['x_train'], mnist['y_train'], mnist['x_test'], mnist['y_test']
# 2. 数据加工
X_train_tensor = torch.tensor(X_train/255, dtype=torch.float32)  # 将训练集样本自变量转为tensor
X_test_tensor = torch.tensor(X_test/255, dtype=torch.float32)    # 将测试集样本自变量转为tensor
y_train_tensor = torch.tensor(y_train, dtype=torch.int64)         # 将训练集样本标签转为tensor

train_ds = torch.utils.data.TensorDataset(X_train_tensor, y_train_tensor)       # 将训练数据转为tensordata格式
train_dl = torch.utils.data.DataLoader(train_ds, batch_size=32, shuffle=True)   # 执行打乱和分批操作


class Rnn(torch.nn.Module):
    def __init__(self):
        super(Rnn, self).__init__()
        self.lstm = torch.nn.LSTM(input_size=28, hidden_size=100, batch_first=True)  # 定义LSTM层
        self.fc = torch.nn.Linear(in_features=100, out_features=10)                  # 全连接(隐藏层)

    def forward(self, x):
        x, (_, _) = self.lstm(x)  # 执行LSTM操作
        x = self.fc(x[:, -1, :])  # 获取最后一个第28个(即-1)
        return x

# 3. 构建模型(搭建网络)
network = Rnn()  # 实例化得到一个网络模型

# 4. 模型配置
loss_fn = torch.nn.CrossEntropyLoss()   # 定义交叉商损失函数
optimizer = torch.optim.SGD(network.parameters(), lr=0.01)   # 定义优化器 learning rate学习率

# 5. 模型训练与保存
for epoch in range(20):
    for image, label in train_dl:
        y_pre = network(image)             # 前向传播
        loss = loss_fn(y_pre, label)       # 计算模型损失
        network.zero_grad()                # 将网络中所有参数的梯度进行清零
        loss.backward()                    # 计算梯度
        optimizer.step()                   # 对网络参数(参数和阈值)进行优化
    print(f'第{epoch}轮训练的最后一批样本的训练损失值为: {loss.item()}')

# 6. 性能验证
predicted = network(X_test_tensor)               # 调用已训练好的模型对测试样本进行预测
result = predicted.data.numpy().argmax(axis=1)   # 模型对测试样本的预测标签
acc_test = (y_test == result).mean()             # 测试精度

torch.save(network.state_dict(), 'mnist_2.pt')   # 保存已经训练好的模型(参数)  权值阈值

# 对网络参数(参数和阈值)进行优化
print(f'第{epoch}轮训练的最后一批样本的训练损失值为: {loss.item()}')

# 6. 性能验证
predicted = network(X_test_tensor)               # 调用已训练好的模型对测试样本进行预测
result = predicted.data.numpy().argmax(axis=1)   # 模型对测试样本的预测标签
acc_test = (y_test == result).mean()             # 测试精度

torch.save(network.state_dict(), 'mnist_2.pt')   # 保存已经训练好的模型(参数)  权值阈值
相关推荐
AI王也6 分钟前
ChatGPT 4o 使用指南 (9月更新)
人工智能·chatgpt·prompt·aigc
望繁信科技9 分钟前
望繁信科技受邀出席ACS2023,为汽车行业数智化护航添翼
人工智能·企业数字化转型·流程挖掘·流程智能·数字北极星
木凳子a12 分钟前
给儿童掏耳朵用哪个好?儿童耳勺最建议买的五个牌子
人工智能·安全·信息可视化·智能家居·健康医疗
秋922 分钟前
教师心理学能力研判:多维度视角下的分析,判断教师心理学知识能力强弱,并提出针对性意见
人工智能·心理学研判·教师心理学研判·心理学知识研判
中科微星22 分钟前
相位型SLM硬件产品面型性能提升
图像处理·人工智能·深度学习
AI2024081424 分钟前
众数信科AI智能体政务服务解决方案——寻知智能笔录系统
人工智能·政务
生信宝典1 小时前
ROC和AUC也不是评估机器学习性能的金标准
人工智能·qt·机器学习
ShuQiHere2 小时前
【ShuQiHere】 探索计算机视觉的世界:从基础到应用
人工智能·计算机视觉
毕小宝2 小时前
TensorFlow 的基本概念和使用场景
人工智能·python·tensorflow
Yorelee.2 小时前
保研面试问题总结
深度学习·动态规划