PyTorch深度学习原理与实现

PyTorch深度学习原理与实现

1. 引言

深度学习发展历程

  1. 感知机网络(解决线性可分问题,20世纪40年代)

  2. BP神经网络(解决线性不可分问题,20世纪80年代)

  3. 深度神经网络(海量图片分类,2010年左右)

    常见深度神经网络:CNN、RNN、LSTM、GRU、GAN、DBN、RBM ......

深度应用领域

  1. 计算机视觉

  2. 语音识别

  3. 自然语言处理

  4. 人机博弈

深度学习、机器学习以及人工智能

深度学习VS传统机器学习

深度神经网络 VS 浅层神经网络

2. 卷积神经网络CNN

BP神经网络缺陷

  1. 不能移动

  2. 不能变形

  3. 运算量大

解决办法

  1. 大量物体位于不同位置的数据训练

  2. 增加网络的隐藏层个数。

  3. 权值共享(不同位置拥有相同权值)

卷积神经网络结构[深度学习(DEEP LEARNING)]

covolutional layer(卷积)、ReLu layer(非线性映射)、pooling layer(池化)、

fully connected layer(全连接)、output(输出)的组合,例如下图所示的结构。

全连接与局部连接(权值共享)

在CNN中,先选择一个局部区域(filter),用这个局部区域去扫描整张图片。 局部区域所圈起来的所有节点会被连接到下一层的一个节点上。

2.1 卷积层-权值共享

2.2 非线性映射ReLU

非线性映射(Rectified Linear Units)

和前馈神经网络一样,经过线性组合和偏移后,会加入非线性增强模型的拟合能力。

经过线性组合和偏移后,会加入非线性增强模型的拟合能力,将卷积所得的Feature Map经过ReLU变换。

下图函数解释:++(小于零部分为零,大于零部分等于它本身)++

2.3 池化(pooling)

python 复制代码
import matplotlib.pyplot as plt
import torch

# 读取照片
image = plt.imread('_5_PyTorch深度学习/8.jpg')
# 将照片转为卷积层能接受的形式
image = image.reshape([-1, 1, 28, 28])

# 构建卷积层
# in_channels通道,当前灰度图片,通道为1; out_channels为过滤层filter的个数; kernel_size为过滤层纬度 5×5
conv2d = torch.nn.Conv2d(in_channels=1, out_channels=32, kernel_size=5)
# 执行卷积操作
    result_conv = conv2d(torch.tensor(image, dtype=torch.float32))

# 卷积可视化
plt.figure(figsize=(10, 8))  # 创建一张画布
for i in range(20):
    plt.subplot(4, 5, i+1)
    plt.imshow(result_conv.data.numpy()[0, i, :, :], cmap='gray')   # 绘制子图
    plt.axis('off')   # 关闭坐标轴
plt.show()
# 构建池化层
# kernel_size过滤层纬度 2×2 每次跳转间隔
max_pool2d = torch.nn.MaxPool2d(kernel_size=2, stride=2)
# 执行池化操作
result_pool = max_pool2d(result_conv)
# 池化可视化
plt.figure(figsize=(10, 8))  # 创建一张画布
for i in range(20):
    plt.subplot(4, 5, i+1)
    plt.imshow(result_pool.data.numpy()[0, i, :, :], cmap='gray')   # 绘制子图
    plt.axis('off')   # 关闭坐标轴
plt.show()

原图:

第一次卷积结果:

第一次池化结果:

2.4 全连接层

卷积-->池化-->卷积-->池化-->全连接-->全连接-->高斯连接

输入 32×32

-> 通过6个不同的filter(5×5)卷积后 -> 6@28×28

-> 池化后 -> 6@14×14

-> 通过16个不同的filter(5×5)卷积后 -> 16@10×10

-> 池化后 -> 6@5×5

-> 全连接

3. 循环神经网络RNN

传统神经网络结构

  • 对一般的神经网络,无论是arrive Beijing还是leave Beijing,Beijing作为BP神经网络的输入时,输出的都是Destination

  • Input 一样的内容,Output就是一样的内容

  • **我们希望神经网络有记忆,记得 ** Beijing 前的 arrive 或者 leave

3.1 隐状态(Hidden State)h

3.2 输出状态

3.3 随时间反向传播(BPTT)算法


3.4 N VS 1 RNN结构

n个输入一个输出

3.5 1 VS N RNN结构

1个输入n个输出

3.6 N vs M

n个输入m个输出

4. 长短时记忆网络LSTM

在 RNN 中,因为通常前期的层会因为梯度消失而停止学习,RNN 会忘记它在更长的序列中看到的东西,从而只拥有短期记忆。

4.1 遗忘门(forget gate)遗忘或保存

4.2 输入门(input gate)更新单元状态

4.3 单元状态

4.4 输出门(output gate)

决定下一个隐藏状态

4.5 示例

5. 利用RNN&LSTM实现手写数字识别

任务实现

  1. 加载数据

  2. 数据加工

  3. 构建模型(搭建网络)

  4. 模型配置

  5. 模型训练

  6. 性能验证

python 复制代码
import matplotlib.pyplot as plt
import torch

# 读取照片
image = plt.imread('_5_PyTorch深度学习/8.jpg')

# 将照片转为卷积层能接受的形式
image = image.reshape([-1, 28, 28])

# 构建LSTM
# 一个序列放进去,序列中一个向量中元素的个数 ,input_size输入数据的个数
# hidden_size 设置神经元个数
# batch_first 样本个数在第一位
rnn = torch.nn.LSTM(input_size=28, hidden_size=100, batch_first=True)

# 执行LSTM
output, (_, _) = rnn(torch.tensor(image, dtype=torch.float32))

plt.imshow(output.data.numpy()[0].T, cmap='gray')
plt.show()
python 复制代码
import numpy as np
import torch

# 1. 加载数据
mnist = np.load('_5_PyTorch深度学习/mnist.npz', allow_pickle=True)  # 读取数据
mnist.files
X_train, y_train, X_test, y_test = mnist['x_train'], mnist['y_train'], mnist['x_test'], mnist['y_test']
# 2. 数据加工
X_train_tensor = torch.tensor(X_train/255, dtype=torch.float32)  # 将训练集样本自变量转为tensor
X_test_tensor = torch.tensor(X_test/255, dtype=torch.float32)    # 将测试集样本自变量转为tensor
y_train_tensor = torch.tensor(y_train, dtype=torch.int64)         # 将训练集样本标签转为tensor

train_ds = torch.utils.data.TensorDataset(X_train_tensor, y_train_tensor)       # 将训练数据转为tensordata格式
train_dl = torch.utils.data.DataLoader(train_ds, batch_size=32, shuffle=True)   # 执行打乱和分批操作


class Rnn(torch.nn.Module):
    def __init__(self):
        super(Rnn, self).__init__()
        self.lstm = torch.nn.LSTM(input_size=28, hidden_size=100, batch_first=True)  # 定义LSTM层
        self.fc = torch.nn.Linear(in_features=100, out_features=10)                  # 全连接(隐藏层)

    def forward(self, x):
        x, (_, _) = self.lstm(x)  # 执行LSTM操作
        x = self.fc(x[:, -1, :])  # 获取最后一个第28个(即-1)
        return x

# 3. 构建模型(搭建网络)
network = Rnn()  # 实例化得到一个网络模型

# 4. 模型配置
loss_fn = torch.nn.CrossEntropyLoss()   # 定义交叉商损失函数
optimizer = torch.optim.SGD(network.parameters(), lr=0.01)   # 定义优化器 learning rate学习率

# 5. 模型训练与保存
for epoch in range(20):
    for image, label in train_dl:
        y_pre = network(image)             # 前向传播
        loss = loss_fn(y_pre, label)       # 计算模型损失
        network.zero_grad()                # 将网络中所有参数的梯度进行清零
        loss.backward()                    # 计算梯度
        optimizer.step()                   # 对网络参数(参数和阈值)进行优化
    print(f'第{epoch}轮训练的最后一批样本的训练损失值为: {loss.item()}')

# 6. 性能验证
predicted = network(X_test_tensor)               # 调用已训练好的模型对测试样本进行预测
result = predicted.data.numpy().argmax(axis=1)   # 模型对测试样本的预测标签
acc_test = (y_test == result).mean()             # 测试精度

torch.save(network.state_dict(), 'mnist_2.pt')   # 保存已经训练好的模型(参数)  权值阈值

# 对网络参数(参数和阈值)进行优化
print(f'第{epoch}轮训练的最后一批样本的训练损失值为: {loss.item()}')

# 6. 性能验证
predicted = network(X_test_tensor)               # 调用已训练好的模型对测试样本进行预测
result = predicted.data.numpy().argmax(axis=1)   # 模型对测试样本的预测标签
acc_test = (y_test == result).mean()             # 测试精度

torch.save(network.state_dict(), 'mnist_2.pt')   # 保存已经训练好的模型(参数)  权值阈值
相关推荐
Dongsheng_20197 小时前
【汽车篇】AI深度学习在汽车零部件外观检测——刹车片中的应用
人工智能·汽车
LONGZETECH7 小时前
【龙泽科技】汽车转向悬架与制动安全系统技术1+X仿真教学软件(1.2.3 -初级)
人工智能·科技·汽车·汽车仿真教学软件·汽车教学软件
JAVA学习通7 小时前
PostgreSQL 的 hstore、arrays 数据类型
人工智能·自然语言处理
材料科学研究7 小时前
掌握PINN:从理论到实战的神经网络进阶!!
深度学习·神经网络·pinn
B站计算机毕业设计之家7 小时前
多模态项目:Python人脸表情系统 CNN算法 神经网络+Adaboost定位+PyQt5界面 源码+文档 深度学习实战✅
python·深度学习·神经网络·opencv·yolo·计算机视觉·情绪识别
AKAMAI7 小时前
云成本困境:开支激增正阻碍欧洲AI创新
人工智能·云原生·云计算
大模型真好玩8 小时前
LangGraph实战项目:从零手搓DeepResearch(一)——DeepResearch应用体系详细介绍
人工智能·python·mcp
IT古董8 小时前
【第五章:计算机视觉-项目实战之生成式算法实战:扩散模型】3.生成式算法实战:扩散模型-(4)在新数据集上微调现有扩散模型
人工智能
嵌入式-老费8 小时前
Easyx图形库使用(潜力无限的图像处理)
图像处理·人工智能
JXY_AI8 小时前
AI问答与搜索引擎:信息获取的现状
人工智能·搜索引擎