【洛谷 P2678】[NOIP2015 提高组] 跳石头 题解(二分答案+循环)

[NOIP2015 提高组] 跳石头

题目背景

一年一度的"跳石头"比赛又要开始了!

题目描述

这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石。组委会已经选择好了两块岩石作为比赛起点和终点。在起点和终点之间,有 N N N 块岩石(不含起点和终点的岩石)。在比赛过程中,选手们将从起点出发,每一步跳向相邻的岩石,直至到达终点。

为了提高比赛难度,组委会计划移走一些岩石,使得选手们在比赛过程中的最短跳跃距离尽可能长。由于预算限制,组委会至多从起点和终点之间移走 M M M 块岩石(不能移走起点和终点的岩石)。

输入格式

第一行包含三个整数 L , N , M L,N,M L,N,M,分别表示起点到终点的距离,起点和终点之间的岩石数,以及组委会至多移走的岩石数。保证 L ≥ 1 L \geq 1 L≥1 且 N ≥ M ≥ 0 N \geq M \geq 0 N≥M≥0。

接下来 N N N 行,每行一个整数,第 i i i 行的整数 D i ( 0 < D i < L ) D_i( 0 < D_i < L) Di(0<Di<L), 表示第 i i i 块岩石与起点的距离。这些岩石按与起点距离从小到大的顺序给出,且不会有两个岩石出现在同一个位置。

输出格式

一个整数,即最短跳跃距离的最大值。

样例 #1

样例输入 #1

复制代码
25 5 2 
2
11
14
17 
21

样例输出 #1

复制代码
4

提示

输入输出样例 1 说明

将与起点距离为 2 2 2和 14 14 14 的两个岩石移走后,最短的跳跃距离为 4 4 4(从与起点距离 17 17 17 的岩石跳到距离 21 21 21 的岩石,或者从距离 21 21 21 的岩石跳到终点)。

数据规模与约定

对于 20 % 20\% 20%的数据, 0 ≤ M ≤ N ≤ 10 0 \le M \le N \le 10 0≤M≤N≤10。

对于 50 % 50\% 50% 的数据, 0 ≤ M ≤ N ≤ 100 0 \le M \le N \le 100 0≤M≤N≤100。

对于 100 % 100\% 100%的数据, 0 ≤ M ≤ N ≤ 50000 , 1 ≤ L ≤ 1 0 9 0 \le M \le N \le 50000,1 \le L \le 10^9 0≤M≤N≤50000,1≤L≤109。


思路

定义一个check函数,用来检查给定的跳跃距离x是否满足条件。在check函数中,代码遍历岩石的位置,计算相邻岩石之间的距离,如果距离小于x,则移除该岩石,否则保留该岩石。最后,如果移除的岩石数量大于m,则返回true,否则返回false。

使用二分搜索找到满足条件的最大跳跃距离。首先,代码初始化二分搜索的左右边界为0和len。然后,代码进入一个循环,直到左边界大于右边界。在每次循环中,代码计算中间值mid,并调用check函数检查mid是否满足条件。如果满足条件,说明距离偏大,将右边界更新为mid-1;否则,说明距离偏小,将答案ans更新为mid,并将左边界更新为mid+1。最终,当左边界大于右边界时,跳出循环,输出答案ans。

注意:这里有个坑,输入给的数据不含起点和终点的岩石,需要手动设置第n+1块石头到起点的距离为起点到终点的距离,同时在check函数的循环变量范围是从1到n+1而不是到n。如果没有处理终点岩石,测试点Subtask #1会报WA。


AC代码

cpp 复制代码
#include <algorithm>
#include <iostream>
#define AUTHOR "HEX9CF"
using namespace std;

const int N = 1e6 + 7;

// 距离,岩石数,移除岩石数
int len, n, m;
// 岩石i与起点的距离
int d[N];

bool check(int x) {
	int prev = 0;
	int cnt = 0;
	// for (int i = 1; i <= n; i++) {
	for (int i = 1; i <= n + 1; i++) {
		int len = d[i] - prev;
		if (len < x) {
			// 移除
			cnt++;
		} else {
			// 保留
			prev = d[i];
		}
	}
	// cout << x << " " << cnt << endl;
	return cnt > m;
}

int main() {
	cin >> len >> n >> m;
	d[0] = 1;
	d[n + 1] = len;
	for (int i = 1; i <= n; i++) {
		cin >> d[i];
	}

	int l, r, mid;
	int ans;
	l = 0;
	r = len;
	while (l <= r) {
		mid = (l + r) / 2;
		if (check(mid)) {
			// 距离偏大
			r = mid - 1;
		} else {
			// 距离偏小
			ans = mid;
			l = mid + 1;
		}
	}
	cout << ans << endl;
	return 0;
}
相关推荐
搏博2 小时前
机器学习之五:基于解释的学习
人工智能·深度学习·学习·算法·机器学习
耀耀_很无聊4 小时前
02_使用 AES 算法实现文件加密上传至阿里云、解密下载
java·spring boot·算法·阿里云·云计算·aes·oss
共享家95275 小时前
C++模板知识
c++
阿沁QWQ5 小时前
友元函数和友元类
开发语言·c++
江沉晚呤时6 小时前
Redis缓存穿透、缓存击穿与缓存雪崩:如何在.NET Core中解决
java·开发语言·后端·算法·spring·排序算法
achene_ql7 小时前
缓存置换:用c++实现最近最少使用(LRU)算法
开发语言·c++·算法·缓存
predisw7 小时前
垃圾收集GC的基本理解
java·jvm·算法
奔跑的乌龟_7 小时前
L3-040 人生就像一场旅行
数据结构·算法
mahuifa8 小时前
(35)VTK C++开发示例 ---将图片映射到平面2
c++·vtk·cmake·3d开发
网络骑士hrg.8 小时前
题解:洛谷 CF2091E Interesting Ratio
算法