Tensorflow2.0:CNN、ResNet实现MNIST分类识别

以下仅是个人的学习笔记 ,内容可能是错误

CNN:

复制代码
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

# 导入数据
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()

# 数据预处理
x_train = x_train.reshape(-1, 28, 28, 1) / 255.0
x_test = x_test.reshape(-1, 28, 28, 1) / 255.0

# 构建模型
model = keras.Sequential([
    layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)),
    layers.MaxPooling2D(pool_size=(2, 2)),
    layers.Flatten(),
    layers.Dense(10, activation='softmax')
])

# 编译模型
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 训练模型
model.fit(x_train, y_train, epochs=5, validation_data=(x_test, y_test))

# 评估模型
test_loss, test_acc = model.evaluate(x_test, y_test)
print('Test accuracy:', test_acc)

ResNet18:

复制代码
import tensorflow as tf
from keras import layers, models, datasets
import os

# 定义gpu
os.environ['CUDA_VISIBLE_DEVICES'] = '0'  # 指定GPU编号
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
    try:
        tf.config.experimental.set_memory_growth(gpus[0], True)  # 动态申请显存
    except RuntimeError as e:
        print(e)

# 加载数据集
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

# 数据预处理
train_images, test_images = train_images / 255.0, test_images / 255.0


# 搭建残差模块
def resnet_block(inputs, num_filters=16, kernel_size=3, strides=1, activation='relu'):
    x = layers.Conv2D(num_filters, kernel_size=kernel_size, strides=strides, padding='same')(inputs)
    x = layers.BatchNormalization()(x)
    if activation:
        x = layers.Activation(activation)(x)
    return x


# 定义resnet
def resnet18():
    inputs = layers.Input(shape=(32, 32, 3))
    num_filters = 64
    t = layers.BatchNormalization()(inputs)
    t = resnet_block(t, num_filters=num_filters)
    for i in range(2):
        t = resnet_block(t, num_filters=num_filters, activation=None)
        t = layers.Add()([t, layers.Activation('relu')(t)])
    t = resnet_block(t, num_filters=num_filters * 2, strides=2, activation=None)
    t = layers.Add()([t, resnet_block(t, num_filters=num_filters * 2)])
    num_filters *= 2
    for i in range(2):
        t = resnet_block(t, num_filters=num_filters, activation=None)
        t = layers.Add()([t, layers.Activation('relu')(t)])
    t = resnet_block(t, num_filters=num_filters * 2, strides=2, activation=None)
    t = layers.Add()([t, resnet_block(t, num_filters=num_filters * 2)])
    num_filters *= 2
    for i in range(2):
        t = resnet_block(t, num_filters=num_filters, activation=None)
        t = layers.Add()([t, layers.Activation('relu')(t)])
    t = layers.AveragePooling2D()(t)
    outputs = layers.Dense(10, activation='softmax')(layers.Flatten()(t))
    model = models.Model(inputs, outputs)
    return model


# 定义模型
model = resnet18()
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 训练 CPU
# history = model.fit(train_images, train_labels, epochs=10,
#                     validation_data=(test_images, test_labels))

with tf.device('GPU:0'):  # 指定使用GPU
    history = model.fit(train_images, train_labels, epochs=10,
                        validation_data=(test_images, test_labels))
相关推荐
澪-sl13 小时前
基于CNN的人脸关键点检测
人工智能·深度学习·神经网络·计算机视觉·cnn·视觉检测·卷积神经网络
lishaoan7713 小时前
使用tensorflow的线性回归的例子(四)
人工智能·tensorflow·线性回归
lishaoan7713 小时前
使用tensorflow的线性回归的例子(九)
tensorflow·线性回归·neo4j
羊小猪~~16 小时前
【NLP入门系列五】中文文本分类案例
人工智能·深度学习·考研·机器学习·自然语言处理·分类·数据挖掘
19891 天前
【零基础学AI】第21讲:TensorFlow基础 - 神经网络搭建入门
人工智能·python·神经网络·算法·机器学习·tensorflow
Jay Kay1 天前
TensorFlow源码深度阅读指南
人工智能·python·tensorflow
有Li2 天前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
加油吧zkf2 天前
目标检测新纪元:DETR到Mamba实战解析
图像处理·人工智能·python·目标检测·分类
羊小猪~~3 天前
【NLP入门系列四】评论文本分类入门案例
人工智能·自然语言处理·分类
weisian1513 天前
人工智能-基础篇-10-什么是卷积神经网络CNN(网格状数据处理:输入层,卷积层,激活函数,池化层,全连接层,输出层等)
人工智能·神经网络·cnn