PyTorch DataLoader整理函数详解【collate_fn】

DataLoader 是 PyTorch 中最常用的类之一。 而且,它是你首先学习的内容之一。 该类有很多参数,但最有可能的是,你将使用其中的大约三个参数(dataset、shuffle 和 batch_size)。 今天我想解释一下 collate_fn 的含义---根据我的经验,我发现它让初学者感到困惑。 我们将简要探讨 PyTorch 如何创建批数据,并了解如何根据需要修改默认行为。

在线工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器

1、批创建流程

每个深度学习课程中最重要的信息之一是我们批量执行训练/推理。 大多数时候,一个批次只是一些堆叠的数据样本。 但在某些情况下,我们想修改它的创建方式。

首先,让我们研究一下默认情况下会发生什么。 假设我们有以下玩具数据集。 它包含四个示例,每个示例三个功能。

import torch
from torch.utils.data import DataLoader
import numpy as np

data = np.array([
    [0.1, 7.4, 0],
    [-0.2, 5.3, 0],
    [0.2, 8.2, 1],
    [0.2, 7.7, 1]])
print(data)

如果我们向加载程序请求一个批次,我们将看到以下内容(请注意,我设置了 shuffle=False 以消除随机性):

loader = DataLoader(data, batch_size=2, shuffle=False)
batch = next(iter(loader))
print(batch)

# tensor([[ 0.1000,  7.4000,  0.0000],
#         [-0.2000,  5.3000,  0.0000]], dtype=torch.float64)

结果毫不奇怪,但让我们正式描述一下已经做了什么:

  • 加载器从数据集中选择了 2 个样本。
  • 这些样本被转换为张量(2 个大小为 3 的样本)。
  • 创建并返回一个新的张量 (2x3)。

默认设置还允许我们使用字典。 让我们看一个例子:

from pprint import pprint
# now dataset is a list of dicts
dict_data = [
    {'x1': 0.1, 'x2': 7.4, 'y': 0},
    {'x1': -0.2, 'x2': 5.3, 'y': 0},
    {'x1': 0.2, 'x2': 8.2, 'y': 1},
    {'x1': 0.2, 'x2': 7.7, 'y': 10},
]
pprint(dict_data)
# [{'x1': 0.1, 'x2': 7.4, 'y': 0},
# {'x1': -0.2, 'x2': 5.3, 'y': 0},
# {'x1': 0.2, 'x2': 8.2, 'y': 1},
# {'x1': 0.2, 'x2': 7.7, 'y': 10}]

loader = DataLoader(dict_data, batch_size=2, shuffle=False)
batch = next(iter(loader))
pprint(batch)
# {'x1': tensor([ 0.1000, -0.2000], dtype=torch.float64),
#  'x2': tensor([7.4000, 5.3000], dtype=torch.float64),
#  'y': tensor([0, 0])}

加载器足够聪明,可以正确地从字典列表中重新打包数据。 当你的数据采用 JSONL 格式(我个人更喜欢这种格式而不是 CSV)时,此功能非常方便。

2、自定义collate函数

如果默认规则如此智能,为什么我们需要创建自定义collate规则呢? 默认设置有一个很大的限制------批数据必须处于同一维度。 假设我们有一个 NLP 任务,并且数据是分词后的文本。

# values are token indices but it does not matter - it can be any kind of variable-size data
nlp_data = [
    {'tokenized_input': [1, 4, 5, 9, 3, 2],
     'label':0},
    {'tokenized_input': [1, 7, 3, 14, 48, 7, 23, 154, 2],
     'label':0},
    {'tokenized_input': [1, 30, 67, 117, 21, 15, 2],
     'label':1},
    {'tokenized_input': [1, 17, 2],
     'label':0},
]
loader = DataLoader(nlp_data, batch_size=2, shuffle=False)
batch = next(iter(loader))

上面的代码不会工作并引发错误:

/usr/local/lib/python3.7/dist-packages/torch/utils/data/_utils/collate.py in default_collate(batch)
     80         elem_size = len(next(it))
     81         if not all(len(elem) == elem_size for elem in it):
---> 82             raise RuntimeError('each element in list of batch should be of equal size')
     83         transposed = zip(*batch)
     84         return [default_collate(samples) for samples in transposed]

RuntimeError: each element in list of batch should be of equal size

错误消息表明不可能创建非矩形张量。 顺便说一句,可以看到触发错误的是 default_collate函数。

我们可以做什么? 有两种解决方案:

  • 将整个数据集填充到最长的样本。
  • 在批创建期间动态填充。

第一个解决方案可能看起来更简单---只需将所有样本扩展到最长的样本即可。 但有一个问题---我们会浪费内存和计算能力(它们在 GPU 上很昂贵!)来处理 padding,这并不影响结果。 如果我们的数据中有一些长序列,而且大多数序列都相对较短,那就尤其痛苦。 在这种情况下,我们主要是处理填充而不是数据!

如果我们将整个数据集填充到最长的序列,会浪费大量空间!

另一种方法是动态填充数据。 当选择该批的样本时,我们只将它们填充到最长的样本。 如果我们另外按长度对数据进行排序,则填充将是最小的。 如果有一些非常长的序列,它们只会影响它们的批次,而不是整个数据集。

好吧,但是如何实现呢? 只需创建一个自定义 collate_fn , 这很简单:

from torch.nn.utils.rnn import pad_sequence #(1)

def custom_collate(data): #(2)
    inputs = [torch.tensor(d['tokenized_input']) for d in data] #(3)
    labels = [d['label'] for d in data]

    inputs = pad_sequence(inputs, batch_first=True) #(4)
    labels = torch.tensor(labels) #(5)

    return { #(6)
        'tokenized_input': inputs,
        'label': labels
    }

loader = DataLoader(
  	nlp_data, 
    batch_size=2, 
    shuffle=False, 
    collate_fn=custom_collate
) #(7)

iter_loader = iter(loader)
batch1 = next(iter_loader)
pprint(batch1)
batch2 = next(iter_loader)
pprint(batch2)

# {'label': tensor([0, 0]),
#  'tokenized_input': tensor([
#   [  1,   4,   5,   9,   3,   2,   0,   0,   0],
#   [  1,   7,   3,  14,  48,   7,  23, 154,   2]
# ])}

# {'label': tensor([1, 0]),
#  'tokenized_input': tensor([
#   [  1,  30,  67, 117,  21,  15,   2],
#   [  1,  17,   2,   0,   0,   0,   0]])}

代码说明如下:

  • 我们使用 pad_sequence进行填充
  • Collate 函数要传入单个参数 - 样本列表。 在这种情况下,它将是一个字典列表,但它也可以是一个元组列表等------具体取决于数据集。
  • 当数据出现时,如果格式为"字典列表",我们需要遍历它并为所有输入和标签创建一个单独的列表。 与此同时, tokenized_input 被转换为一维张量(它是一个整数列表)。
  • 执行填充。
  • 由于标签是整数列表,我们将其转换为张量。
  • 返回格式化的批次。
  • 在加载器中设置我们的自定义整理函数。

正如我们所看到的,批的格式与字典的默认排序规则相同。 我们清楚地看到填充量很小。

3、结束语

创建自定义整理函数可能不是最常见的任务,但你绝对需要知道如何去做。


原文链接:PyTorch collate_fn详解 - BimAnt

相关推荐
一点媛艺2 小时前
Kotlin函数由易到难
开发语言·python·kotlin
qzhqbb2 小时前
基于统计方法的语言模型
人工智能·语言模型·easyui
冷眼看人间恩怨3 小时前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_883041083 小时前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
魔道不误砍柴功3 小时前
Java 中如何巧妙应用 Function 让方法复用性更强
java·开发语言·python
_.Switch3 小时前
高级Python自动化运维:容器安全与网络策略的深度解析
运维·网络·python·安全·自动化·devops
AI极客菌4 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭4 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^4 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
测开小菜鸟4 小时前
使用python向钉钉群聊发送消息
java·python·钉钉