deepstream-测试发送AMQP

1. 安装库

* glib 2.0


sudo apt-get install libglib2.0 libglib2.0-dev

Install rabbitmq-c library


sudo apt-get install librabbitmq-dev

If you plan to have AMQP broker installed on your local machine


sudo apt-get install rabbitmq-server

2. 启动sever

service rabbitmq-server start

* Starting RabbitMQ Messaging Server rabbitmq-server

root@xx:/opt/nvidia/deepstream/deepstream-6.3# service rabbitmq-server status

Status of node rabbit@xx...

Runtime

OS PID: 21937

OS: Linux

Uptime (seconds): 336

RabbitMQ version: 3.8.2

Node name: rabbit@xx

Erlang configuration: Erlang/OTP 22 [erts-10.6.4] [source] [64-bit] [smp:24:24] [ds:24:24:10] [async-threads:384]

Erlang processes: 279 used, 1048576 limit

Scheduler run queue: 1

Cluster heartbeat timeout (net_ticktime): 60

Plugins

Enabled plugin file: /etc/rabbitmq/enabled_plugins

Enabled plugins:

Data directory

Node data directory: /var/lib/rabbitmq/mnesia/rabbit@xx

Config files

Log file(s)

* /var/log/rabbitmq/rabbit@xx.log

* /var/log/rabbitmq/rabbit@xx.log

Alarms

(none)

Memory

Calculation strategy: rss

Memory high watermark setting: 0.4 of available memory, computed to: 54.0256 gb

other_system: 0.0353 gb (29.28 %)

other_proc: 0.028 gb (23.25 %)

code: 0.0268 gb (22.19 %)

allocated_unused: 0.0258 gb (21.4 %)

other_ets: 0.0027 gb (2.23 %)

atom: 0.0014 gb (1.19 %)

metrics: 0.0002 gb (0.16 %)

binary: 0.0002 gb (0.16 %)

mnesia: 0.0001 gb (0.06 %)

quorum_ets: 0.0 gb (0.04 %)

msg_index: 0.0 gb (0.02 %)

plugins: 0.0 gb (0.01 %)

connection_channels: 0.0 gb (0.0 %)

connection_other: 0.0 gb (0.0 %)

connection_readers: 0.0 gb (0.0 %)

connection_writers: 0.0 gb (0.0 %)

mgmt_db: 0.0 gb (0.0 %)

queue_procs: 0.0 gb (0.0 %)

queue_slave_procs: 0.0 gb (0.0 %)

quorum_queue_procs: 0.0 gb (0.0 %)

reserved_unallocated: 0.0 gb (0.0 %)

File Descriptors

Total: 2, limit: 1048479

Sockets: 0, limit: 943629

Free Disk Space

Low free disk space watermark: 0.05 gb

Free disk space: 64.7967 gb

Totals

Connection count: 0

Queue count: 0

Virtual host count: 1

Listeners

Interface: [::], port: 25672, protocol: clustering, purpose: inter-node and CLI tool communication

Interface: [::], port: 5672, protocol: amqp, purpose: AMQP 0-9-1 and AMQP 1.0

3. 设置nvbroker插件

msgbroker.set_property('proto-lib', "/opt/nvidia/deepstream/deepstream/lib/libnvds_amqp_proto.so")

msgbroker.set_property('config', args.msgbroker_config_path) //默认的cfg_amqp.txt

未完待续......

相关推荐
北辰alk1 小时前
RAG索引流程详解:如何高效解析文档构建知识库
人工智能
九河云1 小时前
海上风电“AI偏航对风”:把发电量提升2.1%,单台年增30万度
大数据·人工智能·数字化转型
wm10432 小时前
机器学习第二讲 KNN算法
人工智能·算法·机器学习
沈询-阿里2 小时前
Skills vs MCP:竞合关系还是互补?深入解析Function Calling、MCP和Skills的本质差异
人工智能·ai·agent·ai编程
xiaobai1782 小时前
测试工程师入门AI技术 - 前序:跨越焦虑,从优势出发开启学习之旅
人工智能·学习
正在学习前端的---小方同学2 小时前
Harbor部署教程
linux·运维
盛世宏博北京2 小时前
云边协同・跨系统联动:智慧档案馆建设与功能落地
大数据·人工智能
TGITCIC3 小时前
讲透知识图谱Neo4j在构建Agent时到底怎么用(二)
人工智能·知识图谱·neo4j·ai agent·ai智能体·大模型落地·graphrag
逆羽飘扬3 小时前
DeepSeek-mHC深度拆解:流形约束如何驯服狂暴的超连接?
人工智能
bing.shao3 小时前
AI工作流如何开始
人工智能