deepstream-测试发送AMQP

1. 安装库

* glib 2.0


sudo apt-get install libglib2.0 libglib2.0-dev

Install rabbitmq-c library


sudo apt-get install librabbitmq-dev

If you plan to have AMQP broker installed on your local machine


sudo apt-get install rabbitmq-server

2. 启动sever

service rabbitmq-server start

* Starting RabbitMQ Messaging Server rabbitmq-server

root@xx:/opt/nvidia/deepstream/deepstream-6.3# service rabbitmq-server status

Status of node rabbit@xx...

Runtime

OS PID: 21937

OS: Linux

Uptime (seconds): 336

RabbitMQ version: 3.8.2

Node name: rabbit@xx

Erlang configuration: Erlang/OTP 22 [erts-10.6.4] [source] [64-bit] [smp:24:24] [ds:24:24:10] [async-threads:384]

Erlang processes: 279 used, 1048576 limit

Scheduler run queue: 1

Cluster heartbeat timeout (net_ticktime): 60

Plugins

Enabled plugin file: /etc/rabbitmq/enabled_plugins

Enabled plugins:

Data directory

Node data directory: /var/lib/rabbitmq/mnesia/rabbit@xx

Config files

Log file(s)

* /var/log/rabbitmq/rabbit@xx.log

* /var/log/rabbitmq/rabbit@xx.log

Alarms

(none)

Memory

Calculation strategy: rss

Memory high watermark setting: 0.4 of available memory, computed to: 54.0256 gb

other_system: 0.0353 gb (29.28 %)

other_proc: 0.028 gb (23.25 %)

code: 0.0268 gb (22.19 %)

allocated_unused: 0.0258 gb (21.4 %)

other_ets: 0.0027 gb (2.23 %)

atom: 0.0014 gb (1.19 %)

metrics: 0.0002 gb (0.16 %)

binary: 0.0002 gb (0.16 %)

mnesia: 0.0001 gb (0.06 %)

quorum_ets: 0.0 gb (0.04 %)

msg_index: 0.0 gb (0.02 %)

plugins: 0.0 gb (0.01 %)

connection_channels: 0.0 gb (0.0 %)

connection_other: 0.0 gb (0.0 %)

connection_readers: 0.0 gb (0.0 %)

connection_writers: 0.0 gb (0.0 %)

mgmt_db: 0.0 gb (0.0 %)

queue_procs: 0.0 gb (0.0 %)

queue_slave_procs: 0.0 gb (0.0 %)

quorum_queue_procs: 0.0 gb (0.0 %)

reserved_unallocated: 0.0 gb (0.0 %)

File Descriptors

Total: 2, limit: 1048479

Sockets: 0, limit: 943629

Free Disk Space

Low free disk space watermark: 0.05 gb

Free disk space: 64.7967 gb

Totals

Connection count: 0

Queue count: 0

Virtual host count: 1

Listeners

Interface: [::], port: 25672, protocol: clustering, purpose: inter-node and CLI tool communication

Interface: [::], port: 5672, protocol: amqp, purpose: AMQP 0-9-1 and AMQP 1.0

3. 设置nvbroker插件

msgbroker.set_property('proto-lib', "/opt/nvidia/deepstream/deepstream/lib/libnvds_amqp_proto.so")

msgbroker.set_property('config', args.msgbroker_config_path) //默认的cfg_amqp.txt

未完待续......

相关推荐
小程同学>o<1 分钟前
Linux 应用层开发入门(一)| ARM平台交叉编译入门:打造你的第一个Linux应用
linux·arm开发·linux应用层
yumgpkpm3 分钟前
银行的数据智能平台和Cloudera CDP 7.3(CMP 7.3)的技术对接
数据库·人工智能·hive·hadoop·elasticsearch·数据挖掘·kafka
JiMoKuangXiangQu5 分钟前
Linux ftrace:function tracer 实现简析
linux·ftrace·function tracer
雅欣鱼子酱6 分钟前
Type-C 终端应用里 给产品增加PD快充取电 PD取电诱骗芯片有什么推荐?
人工智能·单片机·芯片·电子元器件
liulanba6 分钟前
大模型训练参数调优完整指南
人工智能·深度学习
liulanba8 分钟前
AI Agent技术完整指南 第三部分:监控与管理
人工智能
火山引擎开发者社区16 分钟前
火山引擎发布系列《AI 安全白皮书》,构筑AI云原生可信基座
人工智能·安全·火山引擎
JiMoKuangXiangQu18 分钟前
Linux 调度延迟案例 (1):ALSA 播放 XRUN
linux·trace-cmd·xrun·调度延迟
TonyLee01719 分钟前
pytorch深度学习训练随机种子设置
人工智能·pytorch·深度学习
蓑雨春归20 分钟前
2025 AI Coding实践总结 - AI Coding工具真的好用吗?
人工智能·ai编程