Spark作业串行与并行提交job

在Scala中,您可以以串行和并行的方式提交Spark作业。看看如何使用forpar.foreach构造对应的例子。

串行Spark作业(使用for

scala 复制代码
// 串行Spark作业设置
for (tag <- tags) {
  spark.sparkContext.setJobGroup(tag.toString, s"Tag: $tag")

  // 为每个标签执行Spark操作
}

并行Spark作业(使用par.foreach)

scala 复制代码
// 并行Spark作业设置
tags.par.foreach { tag =>
  spark.sparkContext.setJobGroup(tag.toString, s"Tag: $tag")

  // 并行执行每个标签的Spark操作
}

关键区别

for用于顺序处理,而par.foreach允许并行处理。

相关推荐
woshiabc1119 分钟前
windows安装Elasticsearch及增删改查操作
大数据·elasticsearch·搜索引擎
lucky_syq44 分钟前
Saprk和Flink的区别
大数据·flink
lucky_syq1 小时前
流式处理,为什么Flink比Spark Streaming好?
大数据·flink·spark
袋鼠云数栈1 小时前
深入浅出Flink CEP丨如何通过Flink SQL作业动态更新Flink CEP作业
大数据
Java程序之猿1 小时前
微服务分布式(一、项目初始化)
分布式·微服务·架构
来一杯龙舌兰1 小时前
【RabbitMQ】RabbitMQ保证消息不丢失的N种策略的思想总结
分布式·rabbitmq·ruby·持久化·ack·消息确认
小白学大数据2 小时前
如何使用Selenium处理JavaScript动态加载的内容?
大数据·javascript·爬虫·selenium·测试工具
15年网络推广青哥2 小时前
国际抖音TikTok矩阵运营的关键要素有哪些?
大数据·人工智能·矩阵
节点。csn3 小时前
Hadoop yarn安装
大数据·hadoop·分布式
arnold663 小时前
探索 ElasticSearch:性能优化之道
大数据·elasticsearch·性能优化