Spark作业串行与并行提交job

在Scala中,您可以以串行和并行的方式提交Spark作业。看看如何使用forpar.foreach构造对应的例子。

串行Spark作业(使用for

scala 复制代码
// 串行Spark作业设置
for (tag <- tags) {
  spark.sparkContext.setJobGroup(tag.toString, s"Tag: $tag")

  // 为每个标签执行Spark操作
}

并行Spark作业(使用par.foreach)

scala 复制代码
// 并行Spark作业设置
tags.par.foreach { tag =>
  spark.sparkContext.setJobGroup(tag.toString, s"Tag: $tag")

  // 并行执行每个标签的Spark操作
}

关键区别

for用于顺序处理,而par.foreach允许并行处理。

相关推荐
2501_9416233221 小时前
人工智能赋能智慧农业互联网应用:智能种植、农业数据分析与产量优化实践探索》
大数据·人工智能
YangYang9YangYan1 天前
网络安全专业职业能力认证发展路径指南
大数据·人工智能·安全·web安全
小五传输1 天前
常用的文件摆渡系统:让数据安全高效跨越网络界限
大数据·运维·安全
数据科学小丫1 天前
数据分析与FineBI介绍
大数据·数据分析·finebi
ALex_zry1 天前
Git大型仓库推送失败问题完整解决方案
大数据·git·elasticsearch
二进制coder1 天前
Git Fork 开发全流程教程
大数据·git·elasticsearch
天硕国产存储技术站1 天前
DualPLP 双重掉电保护赋能 天硕工业级SSD筑牢关键领域安全存储方案
大数据·人工智能·安全·固态硬盘
雷文成.思泉软件1 天前
以ERP为核心、企微为门户,实现一体化集成
大数据·低代码·创业创新
SuperHeroWu71 天前
【HarmonyOS 6】UIAbility跨设备连接详解(分布式软总线运用)
分布式·华为·harmonyos·鸿蒙·连接·分布式协同·跨设备链接
杜子不疼.1 天前
【探索实战】从0到1打造分布式云原生平台:Kurator全栈实践指南
分布式·云原生