python-opencv 培训课程作业

python-opencv 培训课程作业

作业一:

第一步:读取 res 下面的 flower.jpg,读取彩图,并用 opencv 展示

第二步:彩图 -> 灰度图

第三步:反转图像:最大图像灰度值减去原图像,即可得到反转的图像

第四步:用 plt 对比展示原图、灰度图、反转图 plt.subplot()

python 复制代码
import os
import cv2
import  matplotlib.pyplot as plt
import numpy as np
#默认加载彩图
path=r'flower.jpg'

# imread(path,way)
#way=0 灰度图。way=1 彩图
#默认彩图

#cv2.COLOR_BGR2GRAY

#cv2.COLOR_BGR2RGB
#cv2.COLOR_BGR2HSV,HSV-色调、饱和度、亮度


def cv_show(name,img):
    cv2.imshow(name,img)
    #cv2.waitKey(0),接收0,表示窗口暂停
    cv2.waitKey(0)
    #销毁所有窗口
    cv2.destroyAllWindows()
# 第一步:读取 res 下面的 flower.jpg,读取彩图,并用 opencv 展示
img=cv2.imread(path)

cv_show('flower',img)

# 彩图 -> 灰度图
img_gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)


# 反转图像:最大图像灰度值减去原图像,即可得到反转的图像

max_gray_value=img_gray.max()
print(max_gray_value)

covert_img=max_gray_value-img

# 用 plt 对比展示原图、灰度图、反转图 plt.subplot()

plt.subplot(131)
img = img[:,:, ::-1]
plt.imshow(img)

plt.title('original')

plt.subplot(132)
plt.imshow(img_gray,'gray')
plt.title('img_gray')
plt.subplot(133)
covert_img=covert_img[:,:, ::-1]
plt.imshow(covert_img)
plt.title('covert_img')

plt.show()

作业二:

第一步:第一步:读取 res 下面的 girl.jpg,读取彩图,,并转换为rbg格式展示

第二步:灰度化处理,并展示

第三步:灰度图二值化处理,像素值大于50,设置为255,小于50,设置为0

第四步:伽马变换:通过幂运算来调整图像的对比度和亮度,每个像素值取 0.8 次幂,参考 math.pow(gamma[i][j], 0.8),并展示最终结果

第五步:对数变换:通过对每个像素点的灰度值进行对数计算,以增强图像中低灰度级的细节,增强图像的整体对比度,对每个像素求 3 * math.log(1 + log[i][j]),并展示最终结果

代码如下:

python 复制代码
import cv2
import copy
import math
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np

mpl.rcParams["font.sans-serif"] = ["SimHei"]  # 指定默认字体 SimHei 黑体

# 读入原始图像 res/girl.jpg,并用展示 rgb
path=r'girl.jpg'


def cv_show(name,img):
    cv2.imshow(name,img)
    #cv2.waitKey(0),接收0,表示窗口暂停
    cv2.waitKey(0)
    #销毁所有窗口
    cv2.destroyAllWindows()
# 第一步:读取 res 下面的 girl.jpg,读取彩图,并转换为rbg格式展示
img=cv2.imread(path)

img_rgb=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)


cv_show('original',img)
cv_show('girl_rgb',img_rgb)
#cv_show('girl_rgb',img)
# 灰度化处理,并展示
img_gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

cv_show('girl_gray',img_gray)
# 二值化处理

# gray是灰度图,像素值大于50,设置为255,小于50,设置为0

ret,dst1=cv2.threshold(img_gray,50,255,cv2.THRESH_BINARY)
cv_show('girl_gray_binary',dst1)

# 伽马变换:通过幂运算来调整图像的对比度和亮度,每个像素值取 0.8 次幂,参考 math.pow(gamma[i][j], 0.8),并展示最终结果
rows = img.shape[0]  # rows、cols 行列数,rows 也就是高度
cols = img.shape[1]

 
# 设定伽马值
gamma = 0.8
 
# 对图像进行伽马变换
gamma_correction = np.power(img_gray / 255.0, gamma)
gamma_correction = (gamma_correction * 255).astype(np.uint8)
cv_show('girl_gamma_correctiony',gamma_correction)




# 对数变换:通过对每个像素点的灰度值进行对数计算,以增强图像中低灰度级的细节,增强图像的整体对比度,对每个像素求 3 * math.log(1 + log[i][j]),并展示最终结果
for i in range(rows):
    for j in range(cols):
        img_gray[i][j]= 3 * math.log(1 + img_gray[i][j])
     #   print(img_gray[i][j])

cv_show('log_img',img_gray)




相关推荐
databook1 小时前
概率图模型:机器学习的结构化概率之道
python·机器学习·scikit-learn
拾回程序猿的圈圈∞1 小时前
实战二:开发网页端界面完成黑白视频转为彩色视频
python·ai编程
亚林瓜子1 小时前
AWS Elastic Beanstalk + CodePipeline(Python Flask Web的国区CI/CD)
python·ci/cd·flask·web·aws·beanstalk·codepipeline
春末的南方城市1 小时前
中山大学&美团&港科大提出首个音频驱动多人对话视频生成MultiTalk,输入一个音频和提示,即可生成对应唇部、音频交互视频。
人工智能·python·深度学习·计算机视觉·transformer
深科文库2 小时前
构建 MCP 服务器:第 4 部分 — 创建工具
python·chatgpt·prompt·aigc·agi·ai-native
witton2 小时前
美化显示LLDB调试的数据结构
数据结构·python·lldb·美化·debugger·mupdf·pretty printer
SteveDraw2 小时前
C++动态链接库封装,供C#/C++ 等编程语言使用——C++动态链接库概述(总)
开发语言·c++·c#·封装·动态链接库
十五年专注C++开发2 小时前
设计模式之单例模式(二): 心得体会
开发语言·c++·单例模式·设计模式
nenchoumi31192 小时前
AirSim/Cosys-AirSim 游戏开发(一)XBox 手柄 Windows + python 连接与读取
windows·python·xbox