【pytorch深度学习 应用篇02】训练过程可视化

参考

安装相关库

bash 复制代码
pip install tensorboardX
pip install tensorboard

训练代码

python 复制代码
from tensorboardX import SummaryWriter
logger = SummaryWriter(log_dir="data/log")
 
# 获取优化器和损失函数
optimizer = torch.optim.Adam(MyConvNet.parameters(), lr=3e-4)
loss_func = nn.CrossEntropyLoss()
log_step_interval = 100# 记录的步数间隔
 
for epoch in range(5):
     print("epoch:", epoch)
     # 每一轮都遍历一遍数据加载器
     for step, (x, y) in enumerate(train_loader):
         # 前向计算->计算损失函数->(从损失函数)反向传播->更新网络
         predict = MyConvNet(x)
         loss = loss_func(predict, y)
         optimizer.zero_grad()   # 清空梯度(可以不写)
         loss.backward()     # 反向传播计算梯度
         optimizer.step()    # 更新网络
         global_iter_num = epoch * len(train_loader) + step + 1# 计算当前是从训练开始时的第几步(全局迭代次数)
         if global_iter_num % log_step_interval == 0:
             # 控制台输出一下
             print("global_step:{}, loss:{:.2}".format(global_iter_num, loss.item()))
             # 添加的第一条日志:损失函数-全局迭代次数
             logger.add_scalar("train loss", loss.item() ,global_step=global_iter_num)
             # 在测试集上预测并计算正确率
             test_predict = MyConvNet(test_data_x)
             _, predict_idx = torch.max(test_predict, 1)     # 计算softmax后的最大值的索引,即预测结果
             acc = accuracy_score(test_data_y, predict_idx)
             # 添加第二条日志:正确率-全局迭代次数
             logger.add_scalar("test accuary", acc.item(), global_step=global_iter_num)
             # 添加第三条日志:这个batch下的128张图像
             img = vutils.make_grid(x, nrow=12)
             logger.add_image("train image sample", img, global_step=global_iter_num)
             # 添加第三条日志:网络中的参数分布直方图
             for name, param in MyConvNet.named_parameters():
                 logger.add_histogram(name, param.data.numpy(), global_step=global_iter_num)

绑定端口

如果直接在服务器查看

bash 复制代码
$ tensorboard --logdir=xxx --port=6006

如果想在客户端查看

bash 复制代码
# ssh -L 服务器端口:127.0.0.1:客户端端口 服务器中你的用户名name@服务器的ip  
# 有的服务器做了端口映射 所以-p后面添加你服务器的连接端口号,默认是22端口 
$ ssh -L 16006:127.0.0.1:6006  name@ip -p 22
$ export LC_ALL=C
$ tensorboard --logdir=path --port=6006 # path是你服务器上保存的tensorboard文件

查看

在本地浏览器中访问http://localhost:6006/

相关推荐
星爷AG I17 小时前
9-24 视觉叙事(AGI基础理论)
前端·人工智能
量子-Alex17 小时前
【大模型技术报告】ChatGLM大模型技术报告深度解读
人工智能
zy_destiny18 小时前
【工业场景】用YOLOv26实现8种道路隐患检测
人工智能·深度学习·算法·yolo·机器学习·计算机视觉·目标跟踪
(; ̄ェ ̄)。18 小时前
机器学习入门(二十)支持向量机SVM
人工智能·机器学习·支持向量机
铁手飞鹰18 小时前
[深度学习]Vision Transformer
人工智能·pytorch·python·深度学习·transformer
Web3VentureView18 小时前
目标:覆盖全网主流公链,SYNBO 正式开启公链生态媒体合作矩阵计划
大数据·网络·人工智能·区块链·媒体·加密货币
weixin_3954489118 小时前
average_weights.py
pytorch·python·深度学习
香芋Yu18 小时前
【深度学习教程——02_优化与正则(Optimization)】09_为什么Dropout能防止过拟合?正则化的本质
人工智能·深度学习
易营宝18 小时前
Yandex广告投放效果怎么样?B2B外贸品牌实测报告
人工智能·seo
会飞的老朱18 小时前
专精特新科技企业,如何用数智化打通管理全链路?
人工智能·科技·oa协同办公