python用最小二乘法实现平面拟合

文章目录

数学原理

平面方程可写为

A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0

假设 C C C不为0,则上式可以改写为

z = a x + b y + d z=ax+by+d z=ax+by+d

则现有一组点 { p i } \{p_i\} {pi},则根据 x i , y i x_i,y_i xi,yi以及平面方程,可以得到其对应的 z ^ i \hat z_i z^i

z ^ i = a x i + b y i + d \hat z_i=ax_i+by_i+d z^i=axi+byi+d

从而平面拟合就转换为了最小二乘问题

arg min ⁡ ∑ ∣ z i − z ^ i ∣ \argmin \sum \vert z_i-\hat z_i\vert argmin∑∣zi−z^i∣

将其转换为矩阵形式,记

A = [ x 1 y 1 1 x 2 y 2 1 ⋮ ⋮ x n y n 1 ] , x = [ a b d ] , b = [ z 1 z 2 ⋮ z n ] A=\begin{bmatrix} x_1&y_1&1\\x_2&y_2&1\\\vdots&\vdots\\x_n&y_n&1 \end{bmatrix}, x=\begin{bmatrix}a\\b\\d\end{bmatrix}, b=\begin{bmatrix}z_1\\z_2\\\vdots\\z_n\end{bmatrix} A= x1x2⋮xny1y2⋮yn111 ,x= abd ,b= z1z2⋮zn

则拟合方程变为

A x = b Ax=b Ax=b

相应地 x x x可写为

x = ( A T A ) − 1 A T b x=(A^TA)^{-1}A^Tb x=(ATA)−1ATb

最小二乘法的原理可见:python实现最小二乘法

代码实现

其代码实现如下

python 复制代码
import numpy as np
def planefit(points):
    xs, ys, zs = list(zip(*points))
    A = np.vstack([xs,ys,np.ones_like(xs)]).T
    b = np.reshape(zs, [-1, 1])
    abd = np.linalg.inv(A.T @ A) @ A.T @ b
    return abd.reshape(-1)

其中输入参数points为一组点。第一步将这些点进行坐标拆分,得到一一对应的xs, ys, zs。然后通过这些点,构造矩阵A和向量b,最后输出 ( A T A ) − 1 A T b (A^TA)^{-1}A^Tb (ATA)−1ATb。

测试

首先做一个初始化平面的函数,其功能是随机生成一组在平面中的点,并且为其添加一些噪声。

python 复制代码
# 初始化平面
def initPlane(a, b, d, N, err=0.1):
    xs,ys = np.random.rand(2, N)
    zs = a*xs + b*ys + d + np.random.rand(N)*err
    return list(zip(xs, ys, zs))

然后用planefit函数对这些点进行拟合,通过对比二者之间的差异,来证实算法的有效性

python 复制代码
import matplotlib.pyplot as plt

pts = initPlane(2,3,4,100,1)
a,b,d = planefit(pts)

xs, ys = np.indices([100,100])/100
zs = a*xs + b*ys + d

ax = plt.subplot(projection='3d')
ax.plot_surface(xs, ys, zs, cmap='jet')
ax.scatter(*np.array(pts).T, marker='*')
plt.show()

随着加入的噪声逐渐变大,拟合误差也越来越大

python 复制代码
errs = [0.01, 0.1, 0.2, 0.5, 1, 3, 5]
fits = []
for err in errs:
    pts = initPlane(2,3,4,100,1)
    a,b,d = planefit(pts)
    fits.append([abs(a-2),abs(b-3),abs(d-4)])

import pprint
pprint.pprint(fits)

\[0.09377971025135245, 0.023025216275622373, 0.4933931906466551\], \[0.044310965250572654, 0.05681830483294226, 0.47952260969370997\], \[0.051813469166934745, 0.017914573861143257, 0.47553046120193176\], \[0.08578595894551588, 0.0464898508775029, 0.42791269232718054\], \[0.011569662177250528, 0.15976404558136714, 0.4886516489062753\], \[0.006829071411009302, 0.04832062421804073, 0.5193494695593301\], \[0.1651263679674586, 0.0736367910618192, 0.44103226768552073\]


相关推荐
luojiaao4 分钟前
【Python工具开发】k3q_arxml 简单但是非常好用的arxml编辑器,可以称为arxml杀手包
开发语言·python·编辑器
英英_14 分钟前
视频爬虫的Python库
开发语言·python·音视频
猛犸MAMMOTH19 分钟前
Python打卡第46天
开发语言·python·机器学习
多多*1 小时前
微服务网关SpringCloudGateway+SaToken鉴权
linux·开发语言·redis·python·sql·log4j·bootstrap
梓仁沐白1 小时前
【Kotlin】协程
开发语言·python·kotlin
Java Fans1 小时前
在WPF项目中集成Python:Python.NET深度实战指南
python·.net·wpf
豌豆花下猫1 小时前
Python 潮流周刊#105:Dify突破10万星、2025全栈开发的最佳实践
后端·python·ai
嘻嘻哈哈OK啦2 小时前
day46打卡
python
木头左2 小时前
Docker容器化技术概述与实践
python
坚持就完事了2 小时前
大二下期末
python·numpy·pandas