R语言实现多变量孟德尔随机化分析(1)

多变量孟德尔随机化分析调整了潜在混杂因素的影响。

1、调整哪些因素?参考以往文献。可以分别调整,也可以一起调整。

2、解决了什么问题?某个暴露相关的SNP,往往与某个或者某几个混杂因素相关。可以控制混杂偏倚。

3、如何解释结果?若该暴露的P值小于0.05,则可以说明该暴露独立于其他暴露对结局产生影响。否则是通过其他因素对结局产生影响。

复制代码
#多变量孟德尔随机化(MVMR)
library(TwoSampleMR)
#提取多个暴露变量工具
#body mass index:ieu-b-40;
#hypertension:ebi-a-GCST90038604
#creatinine:ebi-a-GCST90025946
exposure_dat_mv<-mv_extract_exposures(c("ieu-b-40",
                                        "ebi-a-GCST90038604",
                                        "ebi-a-GCST90025946")) #Serum creatinine levels、Smoking initiation

#提取结局信息
outcome_dat_mv<-extract_outcome_data(exposure_dat_mv$SNP,"ebi-a-GCST90013862") #colorectal cancer

#整合数据
mvdat<-mv_harmonise_data(exposure_dat_mv,
                         outcome_dat_mv,
                         harmonise_strictness = 2)

#进行MVMR的分析
res <- mv_multiple(mvdat)

#提取结果
result<-res$result
#install package
# remotes::install_github("WSpiller/RMVMR",
#                         build_opts=c("--no-resave-data", "--no-manual"),
#                         build_vignettes = TRUE)
library(MVMR)
help(package="MVMR")
wer <- format_mvmr(BXGs = mvdat[["exposure_beta"]],
                      BYG = mvdat[["outcome_beta"]],
                      seBXGs = mvdat[["exposure_se"]],
                      seBYG = mvdat[["outcome_se"]],
                      RSID = rownames(mvdat[["exposure_beta"]]))
#IVW多变量孟德尔随机化结果
ivw_mvmr(wer)
#计算F值
Fz<- strength_mvmr(r_input = wer, gencov = 0)
#异质性检验
pres <- pleiotropy_mvmr(r_input = wer, gencov = 0)
相关推荐
烟锁池塘柳08 小时前
【R语言】R 语言中打印含有双引号的字符串时会出现 “\” 的原因解析
r语言
全栈开发圈4 天前
干货分享|如何从0到1掌握R语言数据分析
开发语言·数据分析·r语言
小杜的生信筆記7 天前
基于R语言,“上百种机器学习模型”学习教程 | Mime包
开发语言·学习·机器学习·r语言·sci
在打豆豆的小潘学长7 天前
【R语言】多样本单细胞分析_SCTransform+Harmony方案(2)
开发语言·r语言
TS的美梦7 天前
ROGUE: 【张院士团队R包】一种基于熵的用于评估单细胞群体纯度的度量标准
开发语言·r语言
weixin_493202639 天前
R语言代码加密(1)
r语言
Tiger Z9 天前
《R for Data Science (2e)》免费中文翻译 (第3章) --- Data transformation(2)
r语言·数据科学·中文翻译
星石传说11 天前
使用R将nc文件转换为asc文件或者tif文件
r语言·生信
Mister Leon12 天前
机器学习Adaboost算法----SAMME算法和SAMME.R算法
算法·机器学习·r语言
Tiger Z13 天前
R 语言科研绘图第 67 期 --- 箱线图-显著性
r语言·论文·科研·绘图·研究生