大语言模型的三阶段训练

为了训练专有领域模型,选择LLaMA2-7B作为基座模型,由于LLaMA模型中文词表有限,因此首先进行中文词表的扩展,然后进行三阶段训练(增量预训练,有监督微调,强化学习)。

代码将全部上传到github:

https://github.com/hjandlm/LLM_Train

1. 中文词表扩展

原生词表大小是32K,在词表扩展后,词表大小是63608。

2. 增量预训练

为了防止模型的通用能力减弱或消失,将通用数据和领域数据混合,经过调研决定设置5:1的数据配比进行增量预训练。由于资源有限,显卡是一块A100,40G,因此训练较慢。

目前还处于预训练阶段,情况如下:

训练集损失曲线:

测试集损失曲线:

后续将继续研究如何"炼丹",敬请期待!

3. 有监督微调

...

4. 强化学习

...

相关推荐
audyxiao0015 分钟前
AI一周重要会议和活动概览
人工智能·计算机视觉·数据挖掘·多模态
Jeremy_lf24 分钟前
【生成模型之三】ControlNet & Latent Diffusion Models论文详解
人工智能·深度学习·stable diffusion·aigc·扩散模型
桃花键神1 小时前
AI可信论坛亮点:合合信息分享视觉内容安全技术前沿
人工智能
野蛮的大西瓜1 小时前
开源呼叫中心中,如何将ASR与IVR菜单结合,实现动态的IVR交互
人工智能·机器人·自动化·音视频·信息与通信
CountingStars6192 小时前
目标检测常用评估指标(metrics)
人工智能·目标检测·目标跟踪
tangjunjun-owen2 小时前
第四节:GLM-4v-9b模型的tokenizer源码解读
人工智能·glm-4v-9b·多模态大模型教程
冰蓝蓝2 小时前
深度学习中的注意力机制:解锁智能模型的新视角
人工智能·深度学习
橙子小哥的代码世界2 小时前
【计算机视觉基础CV-图像分类】01- 从历史源头到深度时代:一文读懂计算机视觉的进化脉络、核心任务与产业蓝图
人工智能·计算机视觉
新加坡内哥谈技术3 小时前
苏黎世联邦理工学院与加州大学伯克利分校推出MaxInfoRL:平衡内在与外在探索的全新强化学习框架
大数据·人工智能·语言模型
fanstuck3 小时前
Prompt提示工程上手指南(七)Prompt编写实战-基于智能客服问答系统下的Prompt编写
人工智能·数据挖掘·openai