中国计算机学会(CCF)推荐学术会议-C(计算机体系结构/并行与分布计算/存储系统):CF 2026

The 23rd ACM International Conference on Computing Frontiers (CF'26) will take place May 19th-21th, 2026 in Catania, Sicily, Italy. Participation is in-person only.

Computing Frontiers (CF) is an eclectic, interdisciplinary, collaborative community of researchers investigating emerging technologies in the broad field of computing: our common goal is to drive the scientific breakthroughs that support society.

重要信息

CCF推荐:C(计算机体系结构/并行与分布计算/存储系统)

录用率:32.2%(29/90,2025年)

时间地点:2026年5月19日-西西里岛·意大利

截稿时间:2026年1月12日

大会官网:https://www.computingfrontiers.org/2026/

Call for Papers

Hardware Frontiers

Emerging processor architectures, accelerators and memory systems.

Post-exascale high-performance computing.

Quantum computing systems, runtimes, algorithms and applications.

Post-Moore's Law Systems: Neuromorphic, biologically-inspired, superconducting, and hyperdimensional computing.

Distributed Systems and Networking Frontiers

Multi and Hybrid Cloud computing, and challenges.

IoT, CPS, edge and embedded computing systems.

Breakthroughs in edge-cloud continuum, satellite computing.

Sensor networks and wearable computing.

System Software and Runtime Frontiers

Virtualization and containerization.

Platforms for workflows and distributed progamming.

Compilers and optimizations for heterogeneous systems.

Big data platforms and analytics.

AI for Systems and Systems for AI

Distributed AI and federated learning.

System design for efficient AI.

AI for system optimizations.

Agentic AI and AIOps.

Cutting-edge Developments in Computing for Society and Emerging Applications

AI ethics: Privacy, sustainability, biases.

Emerging applications in education, health, smart cities and emerging markets.

Pushing the Boundaries of Cross-cutting Computing Challenges

Designing for scale and performance.

Energy efficiency and sustainability.

Security and privacy, impact of quantum and AI.

Reliability, resiliency and dependability.

Algorithmic innovations.

Benchmarking, performance analysis and modeling.

Paper Types

Full papers are expected to provide well-rounded contributions, where novelty, originality, and sufficient preliminary evaluation are included. Length: maximum of eight (8) pages (excluding references).

Short papers may be position papers or may describe preliminary or highly speculative work. Length: maximum of four (4) pages (including references).

Double-blind

As the review process is double-blind, the removal of all identifying information from paper submissions is required (e.g., cite own (previous) work in the third person, avoid references to machines and/or systems that can identify the paper authors, etc.).

相关推荐
broken_utopia1 小时前
PyTorch中view/transpose/permute的内存可视化解析
人工智能·pytorch·python
大千AI助手1 小时前
正态分布:机器学习中的统计基石与高斯遗产
人工智能·机器学习·概率论·高斯分布·正态分布·概率分布·大千ai助手
LDG_AGI1 小时前
【推荐系统】深度学习训练框架(七):PyTorch DDP(DistributedDataParallel)中,每个rank的batch数必须相同
网络·人工智能·pytorch·深度学习·机器学习·spark·batch
大工mike2 小时前
代码随想录算法训练营第三十三天 | 322. 零钱兑换 279.完全平方数 139.单词拆分
算法
初学大模型2 小时前
使用卷积神经网络(CNN)提取文字特征来辅助大语言模型生成文字
人工智能·机器人
咚咚王者2 小时前
人工智能之数据分析 Matplotlib:第七章 项目实践
人工智能·数据分析·matplotlib
liulilittle2 小时前
C++ 17 字符串填充函数(PaddingLeft、PaddingRight)填充左侧、右侧。
c++·算法
AuroraWanderll2 小时前
深入理解C++多态(三):多态的原理——虚函数表机制(上)
c语言·开发语言·数据结构·c++·算法·stl
mit6.8242 小时前
预统计
算法