Hadoop -- 分布式文件系统

1、分布式文件系统的思想:文件切分的思想(分而治之)

当文件存储在磁盘中,不仅效率比较低,并且文件的大小可能会超出单机的存储的范围。

所以分而治之的思想就是:

不管文件有多大,所有的文件都是由字节数组构成,当想要切分文件的时候,就是将一个字节数组切分成多份,当需要使用这份数据的时候,就可以根据偏移量将字节数据拼接在一起,此时数据又可以继续使用。

2、Block的拆分标准:

1、block是磁盘进行数据读/写的最小单元,数据被切分后的一个整体叫做块。在Hadoop1.0的版本中,默认的大小是64M,在Hadoop2.0以及后面的版本中,默认的大小是128M,这样的目的是达到最小的寻址开销。

2、在同一文件中,每一个block的大小是基本一致的,除了最后节点之外。然么对于不同的文件的block的大小是可以不一样的,不同的文件的大小可以设置成不同数量的block数量。

3、数据块的个数=Ceil(文件大小/每个块的大小)

3、对于block需要等大的原因:

1、可以达到最小的寻址的开销。

2、可以再计算的时候降低计算的复杂度。

3、可以通过偏移量来确定block的位置,并来拉取数据。

4、对于相同的文件block因该是等大的。

5、对于拉去的时间会基本一致。

注意事项

a. 只要有任意一个块丢失,整个数据文件被损坏

​ b. HDFS中一旦文件被存储,数据不允许被修改 ​ 修改会影响偏移量,修改会导致数据倾斜(单节点数据量过多),修改数据会导致蝴蝶效应 ​

c. 但是可以被追加(一般不推荐) ​ 追加设置需要手动打开 ​

d. 一般HDFS存储的都是历史数据.所以将来Map Reduce都用来进行离线数据的处理 ​

f. 块的大小一旦文件上传之后就不允许被修改 128M-512M

4、block保证数据的安全:

a. 只要有任意一个块丢失,整个数据文件被损坏 ​

b. 肯定要对存储数据做备份 ​

c. HDFS是直接对原始数据进行备份的,这样能保证恢复效率和读取效率 ​

d. 备份的数据肯定不能存放在一个节点上,使用数据的时候可以就近获取数据 ​

f. 备份的数量要小于等于节点的数量

g. 每个数据块默认会有三个副本,相同副本是不会存放在同一个节点上 ​

h. 副本的数量可以变更 ​ 可能近期数据被分析的可能性很大,副本数可以多设置几个 ​ 后期数据很少被分析,可以减少副本数

相关推荐
顧棟1 小时前
【Yarn实战】Yarn 2.9.1滚动升级到3.4.1调研与实践验证
hadoop·yarn
铭毅天下1 小时前
Elasticsearch 到 Easysearch 数据迁移 5 种方案选型实战总结
大数据·elasticsearch·搜索引擎·全文检索
跨境小新1 小时前
Facebook广告投放:地域定向流量不精准?x个优化指南
大数据·facebook
ZKNOW甄知科技2 小时前
客户案例 | 派克新材x甄知科技,构建全场景智能IT运维体系
大数据·运维·人工智能·科技·低代码·微服务·制造
币须赢3 小时前
688758赛分科技 阴上阴形态 洗盘上涨?
大数据
学掌门3 小时前
大数据知识合集之预处理方法
大数据
D明明就是我3 小时前
Hive 拉链表
数据仓库·hive·hadoop
库库8394 小时前
Redis分布式锁、Redisson及Redis红锁知识点总结
数据库·redis·分布式
Elastic 中国社区官方博客4 小时前
Elasticsearch 推理 API 增加了开放的可定制服务
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
蒙特卡洛的随机游走4 小时前
Spark核心数据(RDD、DataFrame 和 Dataset)
大数据·分布式·spark