NOI1995:石子合并

题目链接

[NOI1995] 石子合并

题目描述

在一个圆形操场的四周 摆放 N N N 堆石子,现要将石子有次序地合并成一堆,规定每次只能选相邻的 2 2 2 堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。

试设计出一个算法,计算出将 N N N 堆石子合并成 1 1 1 堆的最小得分和最大得分。

输入格式

数据的第 1 1 1 行是正整数 N N N,表示有 N N N 堆石子。

第 2 2 2 行有 N N N 个整数,第 i i i 个整数 a i a_i ai 表示第 i i i 堆石子的个数。

输出格式

输出共 2 2 2 行,第 1 1 1 行为最小得分,第 2 2 2 行为最大得分。

样例 #1

样例输入 #1

复制代码
4
4 5 9 4

样例输出 #1

复制代码
43
54

提示

1 ≤ N ≤ 100 1\leq N\leq 100 1≤N≤100, 0 ≤ a i ≤ 20 0\leq a_i\leq 20 0≤ai≤20。

算法思想

每次只能选相邻的 2 2 2 堆合并成新的一堆,以每次合并为阶段进行区间型动态规划,以最小得分为例:

  • 状态表示: f [ i ] [ j ] f[i][j] f[i][j]表示从第 i i i堆石子一直合并到第 j j j堆石子的最小得分
  • 状态计算:根据最后一次合并的位置可以分为下面几种情况:
    • 将第 i i i堆石子和后面已经完成的 [ i + 1... j ] [i+1...j] [i+1...j]这堆石子合并,得到的分数为 f [ i ] [ i ] + f [ i + 1 ] [ j ] + s [ i . . . j ] f[i][i]+f[i+1][j]+s[i...j] f[i][i]+f[i+1][j]+s[i...j]
    • 将前面已经完成合并的 [ i . . . i + 1 ] [i...i+1] [i...i+1]这堆石子和后面已经完成的 [ i + 2... j ] [i+2...j] [i+2...j]这堆石子合并,得到的分数为 f [ i ] [ i + 1 ] + f [ i + 2 ] [ j ] + s [ i . . . j ] f[i][i+1]+f[i+2][j]+s[i...j] f[i][i+1]+f[i+2][j]+s[i...j]
    • ...
    • 将前面已经完成合并的 [ i . . . k ] [i...k] [i...k]这堆石子和后面已经完成的 [ k + 1... j ] [k+1...j] [k+1...j]这堆石子合并,得到的分数为 f [ i ] [ i + 1 ] + f [ i + 2 ] [ j ] + s [ i . . . j ] f[i][i+1]+f[i+2][j]+s[i...j] f[i][i+1]+f[i+2][j]+s[i...j]
    • ...
    • 将前面已经完成合并的 [ i . . . j − 1 ] [i...j-1] [i...j−1]这堆石子和第 j j j堆石子合并,得到的分数为 f [ i ] [ j − 1 ] + f [ j ] [ j ] + s [ i . . . j ] f[i][j-1]+f[j][j]+s[i...j] f[i][j−1]+f[j][j]+s[i...j]

f [ i ] [ j ] f[i][j] f[i][j]为以上情况的最小值。其中 s [ i . . . j ] s[i...j] s[i...j]表示本次合并得到的分数,也就是第 i i i堆石子到第 j j j堆石子的分数和,可以使用前缀和计算得到。

  • 初始状态:为计算最小值 f [ i ] [ j ] f[i][j] f[i][j]应初始化为无穷大; f [ i ] [ i ] f[i][i] f[i][i]表示就合并自己,初始值为0。

除此之外,由于是在一个圆形操场的四周 摆放 N N N 堆石子,也就是说可以从任何一点出发进行合并。因此,需要采用拆环为链的方式进行处理,最后求以任意起点开始分数的最小值。

时间复杂度

状态数为 n × n n\times n n×n,状态计算时需要枚举最后一次合并位置,因此时间复杂度为 O ( n 3 ) O(n^3) O(n3)。

代码实现

cpp 复制代码
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 110 * 2, INF = 0x3f3f3f3f;
int f[N][N], g[N][N];
int a[N], s[N];

int main()
{
    int n;
    cin >> n;
    for(int i = 1; i <= n; i ++) 
    {
        cin >> a[i];
        a[n + i] = a[i]; //拆环为链
    }
    //计算前缀和
    for(int i = 1; i < 2 * n; i ++) s[i] = s[i - 1] + a[i];
    //枚举每次合并的长度,最小长度为2    
    for(int len = 2; len <= n; len ++)
        for(int i = 1; i + len - 1 < 2 * n; i ++) //枚举开始合并的位置
        {
            int j = i + len - 1; //合并结束的位置
            f[i][j] = INF; //初始状态
            //枚举最后一次合并的位置k
            for(int k = i; k < j; k ++)
            {
                f[i][j] = min(f[i][j], f[i][k] + f[k + 1][j] + s[j] - s[i - 1]); //最小得分
                g[i][j] = max(g[i][j], g[i][k] + g[k + 1][j] + s[j] - s[i - 1]); //最大得分
            }
        }
    
    int minx = 1e9, maxx = 0;
    for(int i = 1; i <= n; i ++) //枚举合并起点
    {
        minx = min(minx, f[i][i + n - 1]);
        maxx = max(maxx, g[i][i + n - 1]);
    }
    cout << minx << '\n' << maxx;
    
    return 0;
}
相关推荐
欧阳x天3 分钟前
STL讲解(二)—string类的模拟实现
c++
带土13 分钟前
2. Linux下FFmpeg C++音视频解码+推流开发
linux·c++·ffmpeg
星火开发设计4 分钟前
C++ set 全面解析与实战指南
开发语言·c++·学习·青少年编程·编程·set·知识
李泽辉_16 分钟前
深度学习算法学习(一):梯度下降法和最简单的深度学习核心原理代码
深度学习·学习·算法
꧁Q༒ོγ꧂19 分钟前
算法详解---大纲
算法
m0_6038887125 分钟前
Scaling Trends for Multi-Hop Contextual Reasoning in Mid-Scale Language Models
人工智能·算法·ai·语言模型·论文速览
Xの哲學28 分钟前
Linux io_uring 深度剖析: 重新定义高性能I/O的架构革命
linux·服务器·网络·算法·边缘计算
scx2013100433 分钟前
20260105 莫队总结
c++
comli_cn35 分钟前
残差链接(Residual Connection)
人工智能·算法
Aaron158842 分钟前
基于VU13P在人工智能高速接口传输上的应用浅析
人工智能·算法·fpga开发·硬件架构·信息与通信·信号处理·基带工程