YOLO中的数据增强|Mixup、Copy-paste、Mosaic解释

🌲🌲🌲前言

从事算法的同学们都应该了解数据在模型效果上的重要性,海量的数据📊更是能"大力出奇迹",但现实中数据往往没有那么理想。在自然界中,有的类别能采集到的图片数量是十分稀少的,这种样本不均衡的问题会导致该类的精度较低;目标检测这种需要用矩形框、多边形框标注物体位置的任务,往往会消耗大量的人力物力和时间。

针对这个问题,研究者们🧑‍🎓提出了各种各样的解决方法和研究课题。一种方法是使用自监督学习,只需要收集大量的图片,并不需要额外给图片打标注,让模型自动化地学习数据内里的特征。一种方法是研究少样本学习方法,比如元学习等,这里就不展开了。还有一种方法是最简单的,就是对数据做各种各样的变换,让模型学到更多的特征。

YOLO中常用的随机翻转、旋转、HSV变换这里先不赘述了,这篇博客将重点介绍YOLO中常用的Mixup、Copy-Paste和Mosaic方法,这些方法都是将多张图片贴合在一起,作为一张图片喂进神经网络中。

1⃣️Mixup

Mixup指的是随机在训练集中抽取两类,用线性插值方法将他们混合在一起。如下图将猫狗🐱🐶按一定比例融合到一张图片中,这张图片的输出标签也按一定比例计算。

即输入为:

<math xmlns="http://www.w3.org/1998/Math/MathML"> x 猫狗混合 = λ x 猫 + ( 1 − λ ) x 狗 x_{猫狗混合} = \lambda x_猫 + (1-\lambda) x_狗 </math>x猫狗混合=λx猫+(1−λ)x狗

输出标签为:

<math xmlns="http://www.w3.org/1998/Math/MathML"> y 猫狗混合 = λ y 猫 + ( 1 − λ ) y 狗 y_{猫狗混合} = \lambda y_猫 + (1-\lambda) y_狗 </math>y猫狗混合=λy猫+(1−λ)y狗

这就构成了一个新的输入和标签样本: <math xmlns="http://www.w3.org/1998/Math/MathML"> ( x 猫狗混合 , y 猫狗混合 ) (x_{猫狗混合},y_{猫狗混合}) </math>(x猫狗混合,y猫狗混合)。

为什么这样做能让模型更鲁棒呢?论文 《mixup: Beyond Empirical Risk Minimization》解释了原理。

在机器学习中,模型的风险分为三种------经验风险、期望风险和结构风险。期望风险指的是理想情况下的模型损失,即对世界上所有存在的样本求损失,这当然是不可能实现的,期望损失为:

<math xmlns="http://www.w3.org/1998/Math/MathML"> I ( f ( x ) , y ) I(f(x),y) </math>I(f(x),y)为模型输出的损失, <math xmlns="http://www.w3.org/1998/Math/MathML"> P ( x , y ) P(x,y) </math>P(x,y)为样本的联合概率分布。

而经验风险就是平时我们常用的损失函数,即给定有限的训练集( <math xmlns="http://www.w3.org/1998/Math/MathML"> x i , y i x_i,y_i </math>xi,yi),求出在这个训练集上的平均损失作为参考:

深度学习模型学到的内容强依赖于训练集,在跟训练集同分布的测试集上效果可能很好,但只要让测试集的分布跟训练集稍有差异,性能就会下降,所以模型泛化能力不足的体现。让模型对自己的输出结果少一些"自信",可以缓解模型在训练集上过拟合,这里将 <math xmlns="http://www.w3.org/1998/Math/MathML"> x x </math>x和 <math xmlns="http://www.w3.org/1998/Math/MathML"> y y </math>y同时变成概率分布,让模型去学习概率分布,而不是一个确定的标签输出,本人觉得这个思路跟label smoothing有异曲同工之妙。

2⃣️copy-paste 方法

copy-paste方法是谷歌团队在2021年提出的一种简单有效的数据增强方法。它将位于不同图片中的实例类别,粘贴到同一张图片中。

先将实例随机翻转,按不同的尺度调整大小,论文中提到了Large Scale Jittering和Standard Scale Jittering,前者的调整幅度较大,后者的调整幅度较小。对实例进行尺度调整能让模型更好地学习大小目标的特征。

Large Scale Jittering: 将图片的尺寸调整到原图的0.1~2.0倍

Standard Scale Jittering: 将图片的尺寸调整到原图的0.8~1.25倍

将两个实例融合粘贴到一起,增强后的图片 <math xmlns="http://www.w3.org/1998/Math/MathML"> I n I_n </math>In为:

<math xmlns="http://www.w3.org/1998/Math/MathML"> I n = I 1 × a + I 2 × ( 1 − a ) I_n =I_1 × a + I_2 × (1-a) </math>In=I1×a+I2×(1−a)

<math xmlns="http://www.w3.org/1998/Math/MathML"> I 1 I_1 </math>I1为从原图抠下来要被粘贴的实例, <math xmlns="http://www.w3.org/1998/Math/MathML"> I 2 I_2 </math>I2为主图片。为了平滑两张图片的边缘,这里使用了高斯平滑方法,实验结果表明,不要融合方法也对结果没有任何影响。

作者比较了一下用coco数据集测试了copy-paste策略在 Mask R-CNN上的性能。可以看到copy-paste方法比mixup方法精度更高,Large Scale Jittering尺度调整方法比Standard Scale Jittering的更好,这里我觉得是因为物体尺寸之间的差别越大,网络能学习的尺寸变多了。

3⃣️Mosaic

比起copy paste方法要将实例从图片中抠出来,在YoloV4方法中提出的Mosaic数据增强更加简单,先将四张图片做各种变换(比如翻转、调整尺寸等),再将他们拼贴在一起,作为网络的输入。这种方法不仅能提升模型的鲁棒性,也能减少mini-batchsize,加快训练的速度。

相关推荐
一水鉴天15 小时前
整体设计 全面梳理复盘之31 Transformer 九宫格三层架构 Designer 全部功能定稿(初稿)之3
人工智能
速创圈15 小时前
Sora2 Pro国内接入终极指南:失败退款+无并发限制
人工智能
leoufung15 小时前
贪心算法理论与应用——以股票买卖问题为例
算法·贪心算法
文心快码 Baidu Comate15 小时前
双十一将至,用Rules玩转电商场景提效
人工智能·ai编程·文心快码·智能编程助手·comate ai ide
瞻邈15 小时前
LION运行笔记
人工智能·深度学习
墨雪不会编程16 小时前
数据结构—排序算法篇三
数据结构·算法·排序算法
CoovallyAIHub16 小时前
外科医生离手术世界模型还有多远?首次提出SurgVeo基准,揭示AI生成手术视频的惊人差距
深度学习·算法·计算机视觉
t1987512816 小时前
基于ELM算法在近红外光谱和拉曼光谱数据处理
算法
Serverless 社区16 小时前
助力企业构建 AI 原生应用,函数计算FunctionAI 重塑模型服务与 Agent 全栈生态
大数据·人工智能