Leetcode 解题模版 - Search, Dynamic Programming

当一个大问题是由多个子问题构成时,我们可以通过不断分解问题来最终构建我们想求的大问题,这个过程称为搜索(Search)

搜索空间(Search Space)可以用tree的形式表现出来,便于理解

时间复杂度取决于这棵树的深度和每个节点的children个数

Search最重要的是定义好状态,保证每个子问题都能用一个状态来描述

DP(Dynamic Progamming)

如果我们重复Search Space有重复问题的话,可以记录下这些子问题的答案来保证不会重复计算多次。所有DP也被称为Search + Memorization

如此一来,时间复杂度就取决于子问题的个数

而搜索空间(Search Space)就可以用Tree的形式展现出来,便于理解。

所有DP都可以写成Bottom Up DFS 的形式。

只要定义好状态,可以从一个中间状态出发去思考递归规则

Bottom Up DFS 模版

  1. Define STATE of the problem

  2. Initialize memo to record calculated subproblems

  3. Return dfs(top_level_answer_state)

dfs(state):

  1. Base case check
  2. If current problem is calculated, return its answer
  3. For each subproblem x

a. Ask subproblem for their answers -> call dfs(sub_problem_state)

b. Build up current state problem answer based on subproblem answers

  1. Store current problem answer

Note: Step 2 & 4 are the difference for DP problems from search questions

例题

思路

对于单个Array或者String来说,一般只有2种定义状态:

  1. i = index or problem_length -> dp[i] 代表[0,i)的答案
  2. i,j = indexes -> dp[i][j] 代表array[i] ~ array[j] 这段subarray的答案

我们先从定义1 开始考虑,尝试是否可行

比如我们现在处于状态 i -> if we can break the word.substring(0,i)

记住DP一定是利用子问题的答案构建当前大问题答案

比如我们知道了子问题的答案是true -> we can break the word .substring(0,j)

那么剩下来的部分就是x =word.substring(j,n), 如果x是dictionary里的一个单词,那么整个问题 i 的答案就是true

把所有可能的 j = [0, i) 都试一遍,只要其中一个满足,整个问题的答案就是true

subproblem j + x

High Level:

  1. state = (length) -> state[i]: if we can break word.substring(0, length)

  2. initialize memo

  3. return dfs(n)

Implementation Steps

  1. Base case: i == 0 -> "" is breakable, return true
  2. if memo[i] != null -> problem has been calculated -> return memo[i]
  3. for each subproblem j from [0,i)

a. Ask subproblem for their answers -> call y = dfs(j)

b. if y == true and word.substring(j,n) in dictionary -> current prblem is true

  1. memo[i] = answer from step 3

  2. return memo[i]

时间复杂度: O(n**2)

相关推荐
Dontla3 分钟前
Dockerfile解析器指令(Parser Directive)指定语法版本,如:# syntax=docker/dockerfile:1
java·docker·eureka
方案开发PCBA抄板芯片解密5 分钟前
什么是算法:高效解决问题的逻辑框架
算法
彭于晏Yan6 分钟前
SpringBoot优化树形结构数据查询
java·spring boot·后端
songx_9916 分钟前
leetcode9(跳跃游戏)
数据结构·算法·游戏
AAA修煤气灶刘哥22 分钟前
缓存这「加速神器」从入门到填坑,看完再也不被产品怼慢
java·redis·spring cloud
小林学习编程24 分钟前
2025年最新AI大模型原理和应用面试题
人工智能·ai·面试
练习时长一年28 分钟前
Spring事件监听机制(三)
java·后端·spring
月阳羊28 分钟前
【硬件-笔试面试题-69】硬件/电子工程师,笔试面试题(知识点:电机驱动电路的反馈电路)
java·经验分享·嵌入式硬件·面试
2301_7813925237 分钟前
用spring框架实现简单的MVC业务
java·后端·spring
phltxy42 分钟前
SpringMVC 程序开发
java·后端·spring