Flink 运行架构和核心概念

几个角色的作用:

  • 客户端:提交作业
  • JobManager进程 任务管理调度
    • JobMaster线程 一个job对应一个JobMaster 负责处理单个作业
    • ResourceManager 资源的分配和管理,资源就是任务槽
    • 分发器 提交应用,为每一个新提交的作业启动一个新的JobMaster 组件
  • TaskManager 处理数据,每个TaskManager 都包含一定的slots

作业提交过程(Standlone)

  1. 提交作业到客户端
  2. 客户端解析参数 提交任务到JobManager
  3. JobManager通过分发器启动并提交应用(作业图 JobGraph),一个作业对应一个JobMaster
  4. JobMaster 将作业图 解析为可执行的执行图 Execution Graph,得到所需要的资源数,向资源管理器请求slots
  5. 资源管理器 向TaskManager请求资源 也就是slots
  6. TaskManager 会向资源管理器注册自己的任务槽,并提供
  7. JobMaster 分发任务给TaskManager

核心概念

并行度

特定算子子任务的个数。

设置有三种方式

  • 代码中设置

stream.map(word -> Tuple2.of(word, 1L)).setParallelism(2);

  • 提交应用时设置 全局设置

bin/flink run --p 2 --c com.atguigu.wc.SocketStreamWordCount

./FlinkTutorial-1.0-SNAPSHOT.jar

  • 配置文件中设置

算子

算子有两种

  • 一对一 类似于窄依赖
  • 重分区 类似于shuffle

并行度相同的 一对一的算子可以合并 成为 算子链

// 禁用算子链

.map(word -> Tuple2.of(word, 1L)).disableChaining();

// 从当前算子开始新链

.map(word -> Tuple2.of(word, 1L)).startNewChain()

任务槽

TaskManager所分配的特定的资源(内存)

任务槽数量的设置,在配置文件中 默认的数量是1

taskmanager.numberOfTaskSlots: 8

任务槽只是隔离内存 不隔离cpu所以 一般会把任务槽的数量设置为cpu的核数,避免不同任务对cpu的争抢。

同一个作业中的不同任务节点的并行子任务,可以放到同一个slot中执行

任务槽和并行度的关系:

占用任务槽的数量等于作业的最大并行度。

参考资料:25_Flink运行时架构_核心概念_并行度设置&优先级_哔哩哔哩_bilibili

相关推荐
五度易链-区域产业数字化管理平台1 小时前
行业分析报告|从算法到基因治疗:生物医药行业的数字化转型与人才战略
大数据·人工智能
阿湯哥1 小时前
Agent+Skills架构进阶:嵌套型SubAgent的Skill化封装方法论
大数据·架构
圣心2 小时前
Gemini3 开发指南 | Gemini AI 开发文档
大数据·人工智能
Guheyunyi3 小时前
智慧消防管理平台的关键技术突破与创新
大数据·运维·人工智能·安全·音视频
Guheyunyi4 小时前
电气安全管理系统:架构、技术与智能预警体系
大数据·人工智能·科技·安全·架构
乐迪信息4 小时前
乐迪信息:智能识别船舶种类的AI解决方案
大数据·网络·人工智能·算法·无人机
2501_920953864 小时前
目前有实力的6S咨询公司推荐
大数据·人工智能
云境天合小科普5 小时前
红外温度传感器:实现预防性维护
大数据
Dxy12393102165 小时前
深度解析 Elasticsearch 8.13.4 范围查询 DSL
大数据·elasticsearch
PNP Robotics5 小时前
PNP机器人分享具身操作策略和数据采集
大数据·人工智能·学习·机器人