Flink 运行架构和核心概念

几个角色的作用:

  • 客户端:提交作业
  • JobManager进程 任务管理调度
    • JobMaster线程 一个job对应一个JobMaster 负责处理单个作业
    • ResourceManager 资源的分配和管理,资源就是任务槽
    • 分发器 提交应用,为每一个新提交的作业启动一个新的JobMaster 组件
  • TaskManager 处理数据,每个TaskManager 都包含一定的slots

作业提交过程(Standlone)

  1. 提交作业到客户端
  2. 客户端解析参数 提交任务到JobManager
  3. JobManager通过分发器启动并提交应用(作业图 JobGraph),一个作业对应一个JobMaster
  4. JobMaster 将作业图 解析为可执行的执行图 Execution Graph,得到所需要的资源数,向资源管理器请求slots
  5. 资源管理器 向TaskManager请求资源 也就是slots
  6. TaskManager 会向资源管理器注册自己的任务槽,并提供
  7. JobMaster 分发任务给TaskManager

核心概念

并行度

特定算子子任务的个数。

设置有三种方式

  • 代码中设置

stream.map(word -> Tuple2.of(word, 1L)).setParallelism(2);

  • 提交应用时设置 全局设置

bin/flink run --p 2 --c com.atguigu.wc.SocketStreamWordCount

./FlinkTutorial-1.0-SNAPSHOT.jar

  • 配置文件中设置

算子

算子有两种

  • 一对一 类似于窄依赖
  • 重分区 类似于shuffle

并行度相同的 一对一的算子可以合并 成为 算子链

// 禁用算子链

.map(word -> Tuple2.of(word, 1L)).disableChaining();

// 从当前算子开始新链

.map(word -> Tuple2.of(word, 1L)).startNewChain()

任务槽

TaskManager所分配的特定的资源(内存)

任务槽数量的设置,在配置文件中 默认的数量是1

taskmanager.numberOfTaskSlots: 8

任务槽只是隔离内存 不隔离cpu所以 一般会把任务槽的数量设置为cpu的核数,避免不同任务对cpu的争抢。

同一个作业中的不同任务节点的并行子任务,可以放到同一个slot中执行

任务槽和并行度的关系:

占用任务槽的数量等于作业的最大并行度。

参考资料:25_Flink运行时架构_核心概念_并行度设置&优先级_哔哩哔哩_bilibili

相关推荐
好好先森&20 分钟前
Linux系统:C语言进程间通信信号(Signal)
大数据
EkihzniY32 分钟前
结构化 OCR 技术:破解各类检测报告信息提取难题
大数据·ocr
吱吱企业安全通讯软件41 分钟前
吱吱企业通讯软件保证内部通讯安全,搭建数字安全体系
大数据·网络·人工智能·安全·信息与通信·吱吱办公通讯
云手机掌柜1 小时前
Tumblr长文运营:亚矩阵云手机助力多账号轮询与关键词布局系统
大数据·服务器·tcp/ip·矩阵·流量运营·虚幻·云手机
拓端研究室3 小时前
专题:2025全球消费趋势与中国市场洞察报告|附300+份报告PDF、原数据表汇总下载
大数据·信息可视化·pdf
阿里云大数据AI技术5 小时前
MaxCompute聚簇优化推荐功能发布,单日节省2PB Shuffle、7000+CU!
大数据
Lx3529 小时前
Hadoop小文件处理难题:合并与优化的最佳实践
大数据·hadoop
激昂网络9 小时前
android kernel代码 common-android13-5.15 下载 编译
android·大数据·elasticsearch
绝缘体110 小时前
折扣大牌点餐api接口对接适合本地生活吗?
大数据·网络·搜索引擎·pygame