Flink 运行架构和核心概念

几个角色的作用:

  • 客户端:提交作业
  • JobManager进程 任务管理调度
    • JobMaster线程 一个job对应一个JobMaster 负责处理单个作业
    • ResourceManager 资源的分配和管理,资源就是任务槽
    • 分发器 提交应用,为每一个新提交的作业启动一个新的JobMaster 组件
  • TaskManager 处理数据,每个TaskManager 都包含一定的slots

作业提交过程(Standlone)

  1. 提交作业到客户端
  2. 客户端解析参数 提交任务到JobManager
  3. JobManager通过分发器启动并提交应用(作业图 JobGraph),一个作业对应一个JobMaster
  4. JobMaster 将作业图 解析为可执行的执行图 Execution Graph,得到所需要的资源数,向资源管理器请求slots
  5. 资源管理器 向TaskManager请求资源 也就是slots
  6. TaskManager 会向资源管理器注册自己的任务槽,并提供
  7. JobMaster 分发任务给TaskManager

核心概念

并行度

特定算子子任务的个数。

设置有三种方式

  • 代码中设置

stream.map(word -> Tuple2.of(word, 1L)).setParallelism(2);

  • 提交应用时设置 全局设置

bin/flink run --p 2 --c com.atguigu.wc.SocketStreamWordCount

./FlinkTutorial-1.0-SNAPSHOT.jar

  • 配置文件中设置

算子

算子有两种

  • 一对一 类似于窄依赖
  • 重分区 类似于shuffle

并行度相同的 一对一的算子可以合并 成为 算子链

// 禁用算子链

.map(word -> Tuple2.of(word, 1L)).disableChaining();

// 从当前算子开始新链

.map(word -> Tuple2.of(word, 1L)).startNewChain()

任务槽

TaskManager所分配的特定的资源(内存)

任务槽数量的设置,在配置文件中 默认的数量是1

taskmanager.numberOfTaskSlots: 8

任务槽只是隔离内存 不隔离cpu所以 一般会把任务槽的数量设置为cpu的核数,避免不同任务对cpu的争抢。

同一个作业中的不同任务节点的并行子任务,可以放到同一个slot中执行

任务槽和并行度的关系:

占用任务槽的数量等于作业的最大并行度。

参考资料:25_Flink运行时架构_核心概念_并行度设置&优先级_哔哩哔哩_bilibili

相关推荐
kdniao12 小时前
问答FQA|快递鸟对接系统/小程序常见问题解答产品篇(一)
大数据·小程序
qq_2704900962 小时前
基于Hadoop的教育大数据可视化系统的设计与实现
大数据·hadoop·信息可视化
电商API_180079052472 小时前
数据驱动商品运营:电商 SKU 生命周期数据分析与优化策略
大数据·数据库·人工智能
syty20202 小时前
flink为什么需要序列化数据传递到算子
大数据·flink
Elastic 中国社区官方博客2 小时前
使用 Elasticsearch 的 Profile API 对比 dense vector 搜索性能
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
是Judy咋!2 小时前
Elasticsearch---集群部署(SSL + X-Pack)
大数据·elasticsearch·ssl
Dxy12393102162 小时前
Elasticsearch 8.13.4 常用搜索操作完全指南
大数据·elasticsearch
samFuB2 小时前
【实证分析】数智化转型对企业新质生产力的影响研究(2015-2023年)
大数据
jiedaodezhuti2 小时前
基于yarn的flink实时流模型内存使用率高问题处理
大数据·flink
潘达斯奈基~2 小时前
spark性能优化4:数据倾斜
大数据·性能优化·spark