Flink 运行架构和核心概念

几个角色的作用:

  • 客户端:提交作业
  • JobManager进程 任务管理调度
    • JobMaster线程 一个job对应一个JobMaster 负责处理单个作业
    • ResourceManager 资源的分配和管理,资源就是任务槽
    • 分发器 提交应用,为每一个新提交的作业启动一个新的JobMaster 组件
  • TaskManager 处理数据,每个TaskManager 都包含一定的slots

作业提交过程(Standlone)

  1. 提交作业到客户端
  2. 客户端解析参数 提交任务到JobManager
  3. JobManager通过分发器启动并提交应用(作业图 JobGraph),一个作业对应一个JobMaster
  4. JobMaster 将作业图 解析为可执行的执行图 Execution Graph,得到所需要的资源数,向资源管理器请求slots
  5. 资源管理器 向TaskManager请求资源 也就是slots
  6. TaskManager 会向资源管理器注册自己的任务槽,并提供
  7. JobMaster 分发任务给TaskManager

核心概念

并行度

特定算子子任务的个数。

设置有三种方式

  • 代码中设置

stream.map(word -> Tuple2.of(word, 1L)).setParallelism(2);

  • 提交应用时设置 全局设置

bin/flink run --p 2 --c com.atguigu.wc.SocketStreamWordCount

./FlinkTutorial-1.0-SNAPSHOT.jar

  • 配置文件中设置

算子

算子有两种

  • 一对一 类似于窄依赖
  • 重分区 类似于shuffle

并行度相同的 一对一的算子可以合并 成为 算子链

// 禁用算子链

.map(word -> Tuple2.of(word, 1L)).disableChaining();

// 从当前算子开始新链

.map(word -> Tuple2.of(word, 1L)).startNewChain()

任务槽

TaskManager所分配的特定的资源(内存)

任务槽数量的设置,在配置文件中 默认的数量是1

taskmanager.numberOfTaskSlots: 8

任务槽只是隔离内存 不隔离cpu所以 一般会把任务槽的数量设置为cpu的核数,避免不同任务对cpu的争抢。

同一个作业中的不同任务节点的并行子任务,可以放到同一个slot中执行

任务槽和并行度的关系:

占用任务槽的数量等于作业的最大并行度。

参考资料:25_Flink运行时架构_核心概念_并行度设置&优先级_哔哩哔哩_bilibili

相关推荐
商业讯网16 小时前
国家电投海外项目运营经验丰富
大数据·人工智能·区块链
面向Google编程6 小时前
Flink源码阅读:Mailbox线程模型
大数据·flink
Elastic 中国社区官方博客7 小时前
使用 Elastic 中的 OpenTelemetry 为 Nginx 实现端到端分布式追踪的实用指南
大数据·运维·分布式·elasticsearch·搜索引擎·信息可视化·全文检索
aliprice7 小时前
逆向拆解:用速卖通图片搜索破解竞品设计,找到你的差异化定价空间
大数据·跨境电商·电商
hg01187 小时前
埃及:在变局中重塑发展韧性
大数据·人工智能·物联网
向量引擎小橙8 小时前
“2026数据枯竭”警报拉响:合成数据如何成为驱动AI进化的“新石油”?
大数据·人工智能·深度学习·集成学习
飞Link8 小时前
【大数据】SparkSQL常用操作
大数据·数据挖掘·spark
m0_466525298 小时前
东软添翼AI 2.0获评医疗健康标杆AI Agent TOP10
大数据·人工智能
光算科技9 小时前
AI重写工具导致‘文本湍流’特征|如何人工消除算法识别标记
大数据·人工智能·算法
geoqiye9 小时前
2026官方认证:贵阳宠物行业短视频运营TOP5评测
大数据·python·宠物