Flink 运行架构和核心概念

几个角色的作用:

  • 客户端:提交作业
  • JobManager进程 任务管理调度
    • JobMaster线程 一个job对应一个JobMaster 负责处理单个作业
    • ResourceManager 资源的分配和管理,资源就是任务槽
    • 分发器 提交应用,为每一个新提交的作业启动一个新的JobMaster 组件
  • TaskManager 处理数据,每个TaskManager 都包含一定的slots

作业提交过程(Standlone)

  1. 提交作业到客户端
  2. 客户端解析参数 提交任务到JobManager
  3. JobManager通过分发器启动并提交应用(作业图 JobGraph),一个作业对应一个JobMaster
  4. JobMaster 将作业图 解析为可执行的执行图 Execution Graph,得到所需要的资源数,向资源管理器请求slots
  5. 资源管理器 向TaskManager请求资源 也就是slots
  6. TaskManager 会向资源管理器注册自己的任务槽,并提供
  7. JobMaster 分发任务给TaskManager

核心概念

并行度

特定算子子任务的个数。

设置有三种方式

  • 代码中设置

stream.map(word -> Tuple2.of(word, 1L)).setParallelism(2);

  • 提交应用时设置 全局设置

bin/flink run --p 2 --c com.atguigu.wc.SocketStreamWordCount

./FlinkTutorial-1.0-SNAPSHOT.jar

  • 配置文件中设置

算子

算子有两种

  • 一对一 类似于窄依赖
  • 重分区 类似于shuffle

并行度相同的 一对一的算子可以合并 成为 算子链

// 禁用算子链

.map(word -> Tuple2.of(word, 1L)).disableChaining();

// 从当前算子开始新链

.map(word -> Tuple2.of(word, 1L)).startNewChain()

任务槽

TaskManager所分配的特定的资源(内存)

任务槽数量的设置,在配置文件中 默认的数量是1

taskmanager.numberOfTaskSlots: 8

任务槽只是隔离内存 不隔离cpu所以 一般会把任务槽的数量设置为cpu的核数,避免不同任务对cpu的争抢。

同一个作业中的不同任务节点的并行子任务,可以放到同一个slot中执行

任务槽和并行度的关系:

占用任务槽的数量等于作业的最大并行度。

参考资料:25_Flink运行时架构_核心概念_并行度设置&优先级_哔哩哔哩_bilibili

相关推荐
keke.shengfengpolang6 分钟前
2026大专大数据与财务管理:不止是会计
大数据
龙山云仓1 小时前
No160:AI中国故事-对话耿恭——孤城坚守与AI韧性:极端环境与信念之光
大数据·人工智能·机器学习
sensen_kiss1 小时前
INT303 Coursework2 贷款批准预测模型(对整个大数据知识的应用)
大数据·机器学习·数据分析
优思学苑6 小时前
过程能力指标CPK高为何现场仍不稳?
大数据·人工智能·管理·pdca·管理方法
qyr67898 小时前
分布式光纤传感全球市场调研报告分析
大数据·人工智能·物联网·分布式光纤传感·市场分析·市场报告
龙亘川8 小时前
城管住建领域丨市政设施监测功能详解(4)——路灯设施监测
大数据·人工智能·路灯设施监测
XLYcmy9 小时前
智能体大赛 总结与展望 比赛总结
大数据·ai·llm·prompt·agent·qwen·万方数据库
zchxzl9 小时前
亲测2026京津冀专业广告展会
大数据·人工智能·python
Elastic 中国社区官方博客10 小时前
在 Kubernetes 上的依赖管理
大数据·elasticsearch·搜索引擎·云原生·容器·kubernetes·全文检索
babe小鑫10 小时前
大专工业大数据应用专业学习数据分析的价值分析
大数据·学习·数据分析