深度学习之基于YoloV5抽烟检测系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。

文章目录

一项目简介

基于YOLOv5(You Only Look Once)的抽烟检测系统可以用于实时检测图像或视频中是否存在抽烟行为,并进行相应的识别和报警。

YOLOv5是一种基于深度学习的目标检测算法,特别适用于实时目标检测任务。该算法通过将图像分割成网格并对每个网格进行分类,同时回归框的边界框参数,从而在单个前向传递中实现目标检测。

构建基于YOLOv5的抽烟检测系统的主要步骤如下:

  1. 数据集准备:收集包含抽烟和非抽烟的图像和标签数据,并进行标注,将其转化为模型可接受的数据格式。

  2. 模型训练:使用YOLOv5的深度学习模型,将准备好的数据集用于训练。在训练过程中,模型将学习提取图像中的抽烟特征,并进行相应的分类和定位。

  3. 测试和优化:使用测试数据集对训练好的模型进行评估,并根据评估结果进行模型优化,以提高检测准确率和性能。

  4. 集成和部署:将训练好的模型集成到抽烟检测系统中,连接相应的摄像头或图像源,并实时检测输入图像中的抽烟行为。

二、功能

深度学习之基于YoloV5抽烟检测系统(图片、视频和实时检测)

环境:Python3.8.5、OpenCV4.8.1、torch2.1.1

简介:可检测图片、检测视频、支持摄像头实时检测,检测接口已封装好并优化,代码可读性强!!!

提供训练好的模型+数据集+源码!

三、系统



四. 总结

在实际使用中,抽烟检测系统可以通过预置的摄像头或监控系统来实时获取图像或视频流。系统将对输入图像进行处理和分析,通过YOLOv5模型检测每个人的行为,并判断是否存在抽烟行为。如果检测到抽烟行为,系统可以触发警报、发送通知或采取其他适当的措施。

该系统的应用场景包括公共场所、办公楼、学校等需要禁烟环境的地方,以提升监管效率和公共安全。然而,部署此类系统时需要考虑隐私保护和合规性相关的问题,确保系统的合法性和有效性。

相关推荐
视觉语言导航7 分钟前
哈工深无人机目标导航新基准!UAV-ON:开放世界空中智能体目标导向导航基准测试
人工智能·深度学习·无人机·具身智能
yzx9910138 分钟前
AI心理助手开发文档
人工智能·深度学习·机器学习
图灵学术计算机论文辅导24 分钟前
论文推荐|迁移学习+多模态特征融合
论文阅读·人工智能·深度学习·计算机网络·算法·计算机视觉·目标跟踪
一百天成为python专家33 分钟前
Python循环语句 从入门到精通
开发语言·人工智能·python·opencv·支持向量机·计算机视觉
轻松Ai享生活1 小时前
GitHub Repo 骨架:Makefile + CUDA 入门程序
人工智能
用户5191495848451 小时前
对抗性工程实践:利用AI自动化构建GitHub仓库的虚假提交历史
人工智能·aigc
riveting2 小时前
重塑工业设备制造格局:明远智睿 T113-i 的破局之道
人工智能·物联网·制造·t113·明远智睿
zzywxc7872 小时前
详细探讨AI在金融、医疗、教育和制造业四大领域的具体落地案例,并通过代码、流程图、Prompt示例和图表等方式展示这些应用的实际效果。
开发语言·javascript·人工智能·深度学习·金融·prompt·流程图
算家计算2 小时前
32K上下文开源语音理解、40分钟深度交互——Voxtral-Small-24B-2507本地部署教程
人工智能·开源·aigc
聚客AI2 小时前
📝工程级开源:PyTorch手搓LLaMA4-MoE全栈指南
人工智能·llm·掘金·日新计划