深度学习之基于YoloV5抽烟检测系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。

文章目录

一项目简介

基于YOLOv5(You Only Look Once)的抽烟检测系统可以用于实时检测图像或视频中是否存在抽烟行为,并进行相应的识别和报警。

YOLOv5是一种基于深度学习的目标检测算法,特别适用于实时目标检测任务。该算法通过将图像分割成网格并对每个网格进行分类,同时回归框的边界框参数,从而在单个前向传递中实现目标检测。

构建基于YOLOv5的抽烟检测系统的主要步骤如下:

  1. 数据集准备:收集包含抽烟和非抽烟的图像和标签数据,并进行标注,将其转化为模型可接受的数据格式。

  2. 模型训练:使用YOLOv5的深度学习模型,将准备好的数据集用于训练。在训练过程中,模型将学习提取图像中的抽烟特征,并进行相应的分类和定位。

  3. 测试和优化:使用测试数据集对训练好的模型进行评估,并根据评估结果进行模型优化,以提高检测准确率和性能。

  4. 集成和部署:将训练好的模型集成到抽烟检测系统中,连接相应的摄像头或图像源,并实时检测输入图像中的抽烟行为。

二、功能

深度学习之基于YoloV5抽烟检测系统(图片、视频和实时检测)

环境:Python3.8.5、OpenCV4.8.1、torch2.1.1

简介:可检测图片、检测视频、支持摄像头实时检测,检测接口已封装好并优化,代码可读性强!!!

提供训练好的模型+数据集+源码!

三、系统



四. 总结

在实际使用中,抽烟检测系统可以通过预置的摄像头或监控系统来实时获取图像或视频流。系统将对输入图像进行处理和分析,通过YOLOv5模型检测每个人的行为,并判断是否存在抽烟行为。如果检测到抽烟行为,系统可以触发警报、发送通知或采取其他适当的措施。

该系统的应用场景包括公共场所、办公楼、学校等需要禁烟环境的地方,以提升监管效率和公共安全。然而,部署此类系统时需要考虑隐私保护和合规性相关的问题,确保系统的合法性和有效性。

相关推荐
过期的秋刀鱼!14 小时前
机器学习-逻辑回归的成本函数的补充-推导
人工智能·机器学习·逻辑回归
shangjian00715 小时前
AI大模型-核心概念-机器学习
人工智能·机器学习
kaizq15 小时前
大语言模型典型本地搭建及其应用
人工智能·ollama·cherry studio·文本对话聊天·知识库/代码库·mcp服务编制·大语言模型llm本地应用
wenzhangli715 小时前
2025软件行业寒冬突围:破解AI编程冲击与项目制困局,一拖三闭环方案成破局关键
人工智能·ai编程
汽车仪器仪表相关领域15 小时前
全自动化精准检测,赋能高效年检——NHD-6108全自动远、近光检测仪项目实战分享
大数据·人工智能·功能测试·算法·安全·自动化·压力测试
夜雨深秋来15 小时前
都2026年了你还不知道AI工程化!
人工智能·代码规范
●VON15 小时前
AI 伦理治理实操指南:从原则到生产线
人工智能
星浩AI15 小时前
Google 官方发布:让你的 AI 编程助手"边写、边看、边调",像人类开发者一样工作
人工智能·后端·开源
Codebee15 小时前
SkillFlow:回归本质的AI能力流程管控
人工智能
巫山老妖16 小时前
2026 年 AI 趋势深度研究报告
人工智能