深度学习之基于YoloV5抽烟检测系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。

文章目录

一项目简介

基于YOLOv5(You Only Look Once)的抽烟检测系统可以用于实时检测图像或视频中是否存在抽烟行为,并进行相应的识别和报警。

YOLOv5是一种基于深度学习的目标检测算法,特别适用于实时目标检测任务。该算法通过将图像分割成网格并对每个网格进行分类,同时回归框的边界框参数,从而在单个前向传递中实现目标检测。

构建基于YOLOv5的抽烟检测系统的主要步骤如下:

  1. 数据集准备:收集包含抽烟和非抽烟的图像和标签数据,并进行标注,将其转化为模型可接受的数据格式。

  2. 模型训练:使用YOLOv5的深度学习模型,将准备好的数据集用于训练。在训练过程中,模型将学习提取图像中的抽烟特征,并进行相应的分类和定位。

  3. 测试和优化:使用测试数据集对训练好的模型进行评估,并根据评估结果进行模型优化,以提高检测准确率和性能。

  4. 集成和部署:将训练好的模型集成到抽烟检测系统中,连接相应的摄像头或图像源,并实时检测输入图像中的抽烟行为。

二、功能

深度学习之基于YoloV5抽烟检测系统(图片、视频和实时检测)

环境:Python3.8.5、OpenCV4.8.1、torch2.1.1

简介:可检测图片、检测视频、支持摄像头实时检测,检测接口已封装好并优化,代码可读性强!!!

提供训练好的模型+数据集+源码!

三、系统



四. 总结

在实际使用中,抽烟检测系统可以通过预置的摄像头或监控系统来实时获取图像或视频流。系统将对输入图像进行处理和分析,通过YOLOv5模型检测每个人的行为,并判断是否存在抽烟行为。如果检测到抽烟行为,系统可以触发警报、发送通知或采取其他适当的措施。

该系统的应用场景包括公共场所、办公楼、学校等需要禁烟环境的地方,以提升监管效率和公共安全。然而,部署此类系统时需要考虑隐私保护和合规性相关的问题,确保系统的合法性和有效性。

相关推荐
zzywxc7874 分钟前
AI 开发工具全景指南:从编码辅助到模型部署的全流程实践
大数据·人工智能·低代码·机器学习·golang·自动化·ai编程
liliangcsdn7 分钟前
mac基于mlx运行轻量级模型gemma-3-270m
人工智能·macos
铮铭19 分钟前
【论文阅读】具身人工智能:从大型语言模型到世界模型
论文阅读·人工智能·语言模型
en-route27 分钟前
从零开始学神经网络——CNN(卷积神经网络)
人工智能·神经网络·cnn
Niuguangshuo30 分钟前
深度学习:池化(Pooling)
人工智能·深度学习
元基时代38 分钟前
专业的短视频发布矩阵哪家靠谱
大数据·人工智能·python·矩阵
腾讯数据架构师1 小时前
k8s 兼容摩尔线程
人工智能·云原生·容器·kubernetes·cube-studio
春末的南方城市2 小时前
AI视频生成进入多镜头叙事时代!字节发布 Waver 1.:一句话生成 10 秒 1080p 多风格视频,创作轻松“一键”达!
人工智能·深度学习·机器学习·计算机视觉·aigc
机器之心2 小时前
节前重磅:开源旗舰模型新SOTA,智谱GLM-4.6问世
人工智能·openai
肖书婷2 小时前
人工智能-机器学习day2
人工智能·机器学习