SVR和SVM是什么关系

SVR(Support Vector Regression)和 SVM(Support Vector Machines)是支持向量机(Support Vector Machine)的两个不同方面,分别用于回归分类问题。

SVM (Support Vector Machines): SVM是一种用于分类和回归的监督学习算法。在分类问题中,SVM的目标是找到一个超平面,将数据分成两个类别,并确保这个超平面距离最近的数据点(支持向量)的间隔最大。在回归问题中,SVM通过构建一个回归模型,尽量使数据点靠近拟合线,同时确保间隔最大

SVR (Support Vector Regression): SVR是SVM的回归版本,用于处理回归问题。与分类问题不同,SVR的目标是构建一个函数,该函数在训练数据的周围形成一个"带"或"管道",并尽量使训练数据点落在这个带中带的宽度受到一些参数的控制,++以确保在建模时对数据的误差限制在一定范围内++。

在数学上,SVM 和 SVR 都涉及到支持向量、核函数等概念。支持向量是训练数据中离超平面最近的点,它们对于模型的性能起着关键的作用。核函数允许在高维空间中进行非线性映射,从而使得在原始空间中线性不可分的问题也能在更高维度的空间中找到超平面。

总的来说,SVM和SVR是同一种基本算法的两个变体,分别应用于++分类和回归++问题。

相关推荐
谎言西西里2 小时前
LeetCode 热题100 --- 双指针专区
算法
leo__5205 小时前
基于两步成像算法的聚束模式SAR MATLAB实现
开发语言·算法·matlab
前端小白在前进5 小时前
力扣刷题:在排序数组中查找元素的第一个和最后一个位置
数据结构·算法·leetcode
学废了wuwu6 小时前
机器学习模型评估指标完全解析:准确率、召回率、F1分数等
人工智能·机器学习
某林2126 小时前
基于SLAM Toolbox的移动机器人激光建图算法原理与工程实现
stm32·嵌入式硬件·算法·slam
修炼地6 小时前
代码随想录算法训练营第四十三天 | 图论理论基础、深搜理论基础、卡码网98. 所有可达路径、797. 所有可能的路径、广搜理论基础
算法·深度优先·图论
iAkuya6 小时前
(leetcode)力扣100 23反转链表(迭代||递归)
算法·leetcode·链表
剪一朵云爱着6 小时前
PAT 1095 Cars on Campus
算法·pat考试
亚里随笔7 小时前
突破性框架TRAPO:统一监督微调与强化学习的新范式,显著提升大语言模型推理能力
人工智能·深度学习·机器学习·语言模型·llm·rlhf
MicroTech20258 小时前
激光点云快速配准算法创新突破,MLGO微算法科技发布革命性点云配准算法技术
人工智能·科技·算法