SVR和SVM是什么关系

SVR(Support Vector Regression)和 SVM(Support Vector Machines)是支持向量机(Support Vector Machine)的两个不同方面,分别用于回归分类问题。

SVM (Support Vector Machines): SVM是一种用于分类和回归的监督学习算法。在分类问题中,SVM的目标是找到一个超平面,将数据分成两个类别,并确保这个超平面距离最近的数据点(支持向量)的间隔最大。在回归问题中,SVM通过构建一个回归模型,尽量使数据点靠近拟合线,同时确保间隔最大

SVR (Support Vector Regression): SVR是SVM的回归版本,用于处理回归问题。与分类问题不同,SVR的目标是构建一个函数,该函数在训练数据的周围形成一个"带"或"管道",并尽量使训练数据点落在这个带中带的宽度受到一些参数的控制,++以确保在建模时对数据的误差限制在一定范围内++。

在数学上,SVM 和 SVR 都涉及到支持向量、核函数等概念。支持向量是训练数据中离超平面最近的点,它们对于模型的性能起着关键的作用。核函数允许在高维空间中进行非线性映射,从而使得在原始空间中线性不可分的问题也能在更高维度的空间中找到超平面。

总的来说,SVM和SVR是同一种基本算法的两个变体,分别应用于++分类和回归++问题。

相关推荐
久菜盒子工作室19 分钟前
量化金融|基于算法和模型的预测研究综述
算法·金融
空白到白22 分钟前
机器学习-集成学习
人工智能·机器学习·集成学习
水凌风里23 分钟前
4.4 机器学习 - 集成学习
人工智能·机器学习·集成学习
雲_kumo24 分钟前
集成学习:从理论到实践的全面解析
人工智能·机器学习·集成学习
CoovallyAIHub1 小时前
SBP-YOLO:面向嵌入式悬架的轻量实时模型,实现减速带与坑洼高精度检测
深度学习·算法·计算机视觉
i.ajls1 小时前
无监督学习,推荐系统以及强化学习笔记
笔记·学习·机器学习
CoovallyAIHub1 小时前
医药、零件、饮料瓶盖……SuperSimpleNet让质检“即插即用”
深度学习·算法·计算机视觉
dragoooon341 小时前
[优选算法专题二滑动窗口——串联所有单词的子串]
数据结构·c++·学习·算法·leetcode·学习方法
刃神太酷啦1 小时前
C++ 异常处理机制:从基础到实践的全面解析----《Hello C++ Wrold!》(20)--(C/C++)
java·c语言·开发语言·c++·qt·算法·leetcode
Brookty2 小时前
【算法】双指针(二)复写零
学习·算法