机器学习二元分类 & 二元交叉熵 & 二元分类例子

二元交叉熵损失函数

深度学习中的二元分类损失函数通常采用二元交叉熵(Binary Cross-Entropy)作为损失函数。

二元交叉熵损失函数的基本公式是:

cpp 复制代码
L(y, y_pred) = -y * log(y_pred) - (1 - y) * log(1 - y_pred)

其中,y是真实标签,y_pred是模型预测的概率。

二元交叉熵的原理

cpp 复制代码
当预测错误时:如y_pred=1, y=0 和 y_pred=0,y=1. 
则二元交叉熵损失函数结果为正无穷大。

二元分类代码例子

python 复制代码
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
# 加载数据集
data = load_breast_cancer()
X = data.data
y = data.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建模型
model = LogisticRegression()
# 定义损失函数
loss_fn = lambda y_true, y_pred: -y_true * log(y_pred) - (1 - y_true) * log(1 - y_pred)
# 训练模型
for epoch in range(100):  # 假设我们进行100轮训练
    # 前向传播
    y_pred = model.predict(X_train)
    loss = loss_fn(y_train, y_pred)
    
    # 反向传播
    model.update(X_train, y_train)
    
    # 输出训练进度
    if (epoch+1) % 10 == 0:
        print(f"Epoch {epoch+1}/{100}, Loss: {loss}")
相关推荐
一点媛艺2 小时前
Kotlin函数由易到难
开发语言·python·kotlin
魔道不误砍柴功3 小时前
Java 中如何巧妙应用 Function 让方法复用性更强
java·开发语言·python
pianmian13 小时前
python数据结构基础(7)
数据结构·算法
_.Switch3 小时前
高级Python自动化运维:容器安全与网络策略的深度解析
运维·网络·python·安全·自动化·devops
测开小菜鸟4 小时前
使用python向钉钉群聊发送消息
java·python·钉钉
Power20246665 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
好奇龙猫5 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
数据猎手小k5 小时前
AndroidLab:一个系统化的Android代理框架,包含操作环境和可复现的基准测试,支持大型语言模型和多模态模型。
android·人工智能·机器学习·语言模型
sp_fyf_20246 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
萧鼎6 小时前
Python并发编程库:Asyncio的异步编程实战
开发语言·数据库·python·异步