教你如何使用PyTorch解决多分类问题

本文分享自华为云社区《使用PyTorch解决多分类问题:构建、训练和评估深度学习模型》,作者: 小馒头学Python。

引言

当处理多分类问题时,PyTorch是一种非常有用的深度学习框架。在这篇博客中,我们将讨论如何使用PyTorch来解决多分类问题。我们将介绍多分类问题的基本概念,构建一个简单的多分类神经网络模型,并演示如何准备数据、训练模型和评估结果。

什么是多分类问题?

多分类问题是一种机器学习任务,其中目标是将输入数据分为多个不同的类别或标签。与二分类问题不同,多分类问题涉及到三个或更多类别的分类任务。例如,图像分类问题可以将图像分为不同的类别,如猫、狗、鸟等。

处理步骤

  • 准备数据:

收集和准备数据集,确保每个样本都有相应的标签,以指明其所属类别。

划分数据集为训练集、验证集和测试集,以便进行模型训练、调优和性能评估。

  • 数据预处理: 对数据进行预处理,例如归一化、标准化、缺失值处理或数据增强,以确保模型训练的稳定性和性能。

  • 选择模型架构: 选择适当的深度学习模型架构,通常包括卷积神经网络(CNN)、循环神经网络(RNN)、Transformer等,具体取决于问题的性质。

  • 定义损失函数: 为多分类问题选择适当的损失函数,通常是交叉熵损失(Cross-Entropy Loss)。

  • 选择优化器: 选择合适的优化算法,如随机梯度下降(SGD)、Adam、RMSprop等,以训练模型并调整权重。

  • 训练模型: 使用训练数据集来训练模型。在每个训练迭代中,通过前向传播和反向传播来更新模型参数,以减小损失函数的值。

  • 评估模型: 使用验证集来评估模型性能。常见的性能指标包括准确性、精确度、召回率、F1分数等。

  • 调优模型: 根据验证集的性能,对模型进行调优,可以尝试不同的超参数设置、模型架构变化或数据增强策略。

  • 测试模型: 最终,在独立的测试数据集上评估模型的性能,以获得最终性能评估。

  • 部署模型: 将训练好的模型部署到实际应用中,用于实时或批处理多分类任务。

多分类问题

之前我们讨论的问题都是二分类居多,对于二分类问题,我们若求得p(0),南无p(1)=1-p(0),还是比较容易的,但是本节我们将引入多分类,那么我们所求得就转化为p(i)(i=1,2,3,4...),同时我们需要满足以上概率中每一个都大于0;且总和为1。

处理多分类问题,这里我们新引入了一个称为Softmax Layer

接下来我们一起讨论一下Softmax Layer层

首先我们计算指数计算e的zi次幂,原因很简单e的指数函数恒大于0;分母就是e的z1次幂+e的z2次幂+e的z3次幂...求和,这样所有的概率和就为1了。

下图形象的展示了Softmax,Exponent这里指指数,和上面我们说的一样,先求指数,这样有了分子,再将所有指数求和,最后一一divide,得到了每一个概率。

接下来我们一起来看看损失函数

如果使用numpy进行实现,根据刘二大人的代码,可以进行如下的实现

复制代码
import numpy as np

y = np.array([1,0,0])

z = np.array([0.2,0.1,-0.1])

y_pred = np.exp(z)/np.exp(z).sum()

loss = (-y * np.log(y_pred)).sum()

print(loss)

运行结果如下

注意:神经网络的最后一层不需要激活

在pytorch中

复制代码
import torch

y = torch.LongTensor([0]) # 长整型

z = torch.Tensor([[0.2, 0.1, -0.1]])

criterion = torch.nn.CrossEntropyLoss()

loss = criterion(z, y)

print(loss)

运行结果如下

下面根据一个例子进行演示

复制代码
criterion = torch.nn.CrossEntropyLoss()

Y = torch.LongTensor([2,0,1])

Y_pred1 = torch.Tensor([[0.1, 0.2, 0.9],

[1.1, 0.1, 0.2],

[0.2, 2.1, 0.1]])

Y_pred2 = torch.Tensor([[0.8, 0.2, 0.3],

[0.2, 0.3, 0.5],

[0.2, 0.2, 0.5]])

l1 = criterion(Y_pred1, Y)

l2 = criterion(Y_pred2, Y)

print("Batch Loss1 = ", l1.data, "\nBatch Loss2=", l2.data)

运行结果如下

根据上面的代码可以看出第一个损失比第二个损失要小。原因很简单,想对于Y_pred1每一个预测的分类与Y是一致的,而Y_pred2则相差了一下,所以损失自然就大了些

MNIST dataset的实现

首先第一步还是导包

复制代码
import torch

from torchvision import transforms

from torchvision import datasets

from torch.utils.data import DataLoader

import torch.nn.functional as F

import torch.optim as optim

之后是数据的准备

复制代码
batch_size = 64

# transform可以将其转化为0-1,形状的转换从28×28转换为,1×28×28

transform = transforms.Compose([

transforms.ToTensor(),

transforms.Normalize((0.1307, ), (0.3081, )) # 均值mean和标准差std

])

train_dataset = datasets.MNIST(root='../dataset/mnist/',

train=True,

download=True,

transform=transform)

train_loader = DataLoader(train_dataset,

shuffle=True,

batch_size=batch_size)

test_dataset = datasets.MNIST(root='../dataset/mnist/',

train=False,

download=True,

transform=transform)

test_loader = DataLoader(test_dataset,

shuffle=False,

batch_size=batch_size)

接下来我们构建网络

复制代码
class Net(torch.nn.Module):

def __init__(self):

super(Net, self).__init__()

self.l1 = torch.nn.Linear(784, 512)

self.l2 = torch.nn.Linear(512, 256)

self.l3 = torch.nn.Linear(256, 128)

self.l4 = torch.nn.Linear(128, 64)

self.l5 = torch.nn.Linear(64, 10)

def forward(self, x):

x = x.view(-1, 784)

x = F.relu(self.l1(x))

x = F.relu(self.l2(x))

x = F.relu(self.l3(x))

x = F.relu(self.l4(x))

return self.l5(x) # 注意最后一层不做激活

model = Net()

之后定义损失和优化器

复制代码
criterion = torch.nn.CrossEntropyLoss()

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

接下来就进行训练了

复制代码
def train(epoch):

running_loss = 0.0

for batch_idx, data in enumerate(train_loader, 0):

inputs, target = data

optimizer.zero_grad()

# forward + backward + update

outputs = model(inputs)

loss = criterion(outputs, target)

loss.backward()

optimizer.step()

running_loss += loss.item()

if batch_idx % 300 == 299:

print('[%d, %5d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))

running_loss = 0.0

def test():

correct = 0

total = 0

with torch.no_grad(): # 这里可以防止内嵌代码不会执行梯度

for data in test_loader:

images, labels = data

outputs = model(images)

_, predicted = torch.max(outputs.data, dim=1)

total += labels.size(0)

correct += (predicted == labels).sum().item()

print('Accuracy on test set: %d %%' % (100 * correct / total))

最后调用执行

复制代码
if __name__ == '__main__':

for epoch in range(10):

train(epoch)

test()

NLLLoss 和 CrossEntropyLoss

NLLLoss 和 CrossEntropyLoss(也称为交叉熵损失)是深度学习中常用的两种损失函数,用于测量模型的输出与真实标签之间的差距,通常用于分类任务。它们有一些相似之处,但也有一些不同之处。

相同点:

用途:两者都用于分类任务,评估模型的输出和真实标签之间的差异,以便进行模型的训练和优化。

数学基础:NLLLoss 和 CrossEntropyLoss 本质上都是交叉熵损失的不同变种,它们都以信息论的概念为基础,衡量两个概率分布之间的相似度。

输入格式:它们通常期望模型的输出是一个概率分布,表示各个类别的预测概率,以及真实的标签。

不同点:

输入格式:NLLLoss 通常期望输入是对数概率(log probabilities),而 CrossEntropyLoss 通常期望输入是未经对数化的概率。在实际应用中,CrossEntropyLoss 通常与softmax操作结合使用,将原始模型输出转化为概率分布,而NLLLoss可以直接使用对数概率。

对数化:NLLLoss 要求将模型输出的概率经过对数化(取对数)以获得对数概率,然后与真实标签的离散概率分布进行比较。CrossEntropyLoss 通常在 softmax 操作之后直接使用未对数化的概率值与真实标签比较。

输出维度:NLLLoss 更通用,可以用于多种情况,包括多类别分类和序列生成等任务,因此需要更多的灵活性。CrossEntropyLoss 通常用于多类别分类任务。

总之,NLLLoss 和 CrossEntropyLoss 都用于分类任务,但它们在输入格式和使用上存在一些差异。通常,选择哪个损失函数取决于你的模型输出的格式以及任务的性质。如果你的模型输出已经是对数概率形式,通常使用NLLLoss,否则通常使用CrossEntropyLoss。

点击关注,第一时间了解华为云新鲜技术~

相关推荐
weixin_307779131 小时前
分析一个深度学习项目并设计算法和用PyTorch实现的方法和步骤
人工智能·pytorch·python
鲤鱼不懂6 小时前
jupyter notebook环境问题
pytorch·python·jupyter
Francek Chen7 小时前
【深度学习基础】多层感知机 | 模型选择、欠拟合和过拟合
人工智能·pytorch·深度学习·神经网络·多层感知机·过拟合
数据馅11 小时前
window系统annaconda中同时安装paddle和pytorch环境
人工智能·pytorch·paddle
Galerkin码农选手13 小时前
寒武纪使用cnnl库函数实现卷积算子
pytorch
AI街潜水的八角1 天前
工业缺陷检测实战——基于深度学习YOLOv10神经网络PCB缺陷检测系统
pytorch·深度学习·yolo
坐吃山猪1 天前
机器学习10-解读CNN代码Pytorch版
pytorch·机器学习·cnn
scdifsn1 天前
动手学深度学习11.6. 动量法-笔记&练习(PyTorch)
pytorch·笔记·深度学习
Golinie1 天前
2025年最新深度学习环境搭建:Win11+ cuDNN + CUDA + Pytorch +深度学习环境配置保姆级教程
人工智能·pytorch·深度学习
silver6871 天前
使用Pytorch完成图像分类任务
pytorch