spark内置数据类型

在用scala编写spark的时候,假如我现在需要将我spark读的数据源的字段,做一个类型转换,因

为需求中要拼接出sql的create table语句,需要每个字段的sql中的类型,那么就需要去和sparksql

中的内置数据类型去比对。

写spark的时候,创建df后用schema算子得到了structField类,查看了源码以后,发现

这个样例类的三个参数:name、dataType、nullable、(metadata)

发现第二个参数是这个包下的

于是查阅资料 发现一共有这些参数:

复制代码
整数类型:

IntegerType 或 IntType: 32 位有符号整数。
LongType: 64 位有符号整数。
ShortType: 16 位有符号整数。
ByteType: 8 位有符号整数。
浮点数类型:

FloatType: 单精度浮点数。
DoubleType: 双精度浮点数。
十进制类型:

DecimalType: 固定精度和固定规模的十进制数。
布尔类型:

BooleanType: 用于表示布尔值(true 或 false)。
字符串类型:

StringType: 用于表示字符串。
二进制类型:

BinaryType: 用于表示二进制数据。
日期和时间类型:

DateType: 用于表示日期。
TimestampType: 用于表示日期和时间。
数组类型:

ArrayType: 用于表示数组。
映射类型:

MapType: 用于表示键值对的映射。
结构类型:

StructType: 用于表示结构化的数据,可以包含多个字段。
空类型:

NullType: 用于表示空值。

这些数据类型都属于 org.apache.spark.sql.types 包,并在 Spark SQL 中提供用于构建 DataFrame 模式的工具。在创建 DataFrame 时,你可以使用这些数据类型来定义每列的数据类型。例如:

复制代码
import org.apache.spark.sql.types._

val schema = StructType(Seq(
  StructField("name", StringType, true),
  StructField("age", IntegerType, false),
  StructField("salary", DoubleType, true)
))

val df = spark.createDataFrame(spark.sparkContext.emptyRDD[Row], schema)
相关推荐
zdkdchao3 小时前
hbase资源和数据权限控制
大数据·数据库·hbase
归去_来兮3 小时前
知识图谱技术概述
大数据·人工智能·知识图谱
计算机毕设定制辅导-无忧学长4 小时前
Kafka 核心架构与消息模型深度解析(一)
分布式·架构·kafka
一弓虽4 小时前
zookeeper 学习
分布式·学习·zookeeper
yt948325 小时前
如何在IDE中通过Spark操作Hive
ide·hive·spark
青春之我_XP5 小时前
【基于阿里云搭建数据仓库(离线)】Data Studio创建资源与函数
大数据·数据仓库·sql·dataworks·maxcompute·data studio
predisw5 小时前
kafka consumer group rebalance
分布式·kafka
明达技术5 小时前
ProfiNet 分布式 IO 在某污水处理厂的应用
分布式
云道轩5 小时前
llm-d:面向Kubernetes的高性能分布式LLM推理框架
分布式·容器·kubernetes
FakeOccupational6 小时前
【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信拓扑与操作 BR/EDR(经典蓝牙)和 BLE
笔记·分布式·p2p