spark内置数据类型

在用scala编写spark的时候,假如我现在需要将我spark读的数据源的字段,做一个类型转换,因

为需求中要拼接出sql的create table语句,需要每个字段的sql中的类型,那么就需要去和sparksql

中的内置数据类型去比对。

写spark的时候,创建df后用schema算子得到了structField类,查看了源码以后,发现

这个样例类的三个参数:name、dataType、nullable、(metadata)

发现第二个参数是这个包下的

于是查阅资料 发现一共有这些参数:

复制代码
整数类型:

IntegerType 或 IntType: 32 位有符号整数。
LongType: 64 位有符号整数。
ShortType: 16 位有符号整数。
ByteType: 8 位有符号整数。
浮点数类型:

FloatType: 单精度浮点数。
DoubleType: 双精度浮点数。
十进制类型:

DecimalType: 固定精度和固定规模的十进制数。
布尔类型:

BooleanType: 用于表示布尔值(true 或 false)。
字符串类型:

StringType: 用于表示字符串。
二进制类型:

BinaryType: 用于表示二进制数据。
日期和时间类型:

DateType: 用于表示日期。
TimestampType: 用于表示日期和时间。
数组类型:

ArrayType: 用于表示数组。
映射类型:

MapType: 用于表示键值对的映射。
结构类型:

StructType: 用于表示结构化的数据,可以包含多个字段。
空类型:

NullType: 用于表示空值。

这些数据类型都属于 org.apache.spark.sql.types 包,并在 Spark SQL 中提供用于构建 DataFrame 模式的工具。在创建 DataFrame 时,你可以使用这些数据类型来定义每列的数据类型。例如:

复制代码
import org.apache.spark.sql.types._

val schema = StructType(Seq(
  StructField("name", StringType, true),
  StructField("age", IntegerType, false),
  StructField("salary", DoubleType, true)
))

val df = spark.createDataFrame(spark.sparkContext.emptyRDD[Row], schema)
相关推荐
云老大TG:@yunlaoda3603 小时前
华为云国际站代理商TaurusDB的成本优化体现在哪些方面?
大数据·网络·数据库·华为云
面向Google编程4 小时前
Flink源码阅读:窗口
大数据·flink
老蒋新思维4 小时前
知识IP的长期主义:当AI成为跨越增长曲线的“第二曲线引擎”|创客匠人
大数据·人工智能·tcp/ip·机器学习·创始人ip·创客匠人·知识变现
乐迪信息6 小时前
乐迪信息:煤矿皮带区域安全管控:人员违规闯入智能识别
大数据·运维·人工智能·物联网·安全
悟能不能悟6 小时前
springboot全局异常
大数据·hive·spring boot
hans汉斯6 小时前
嵌入式操作系统技术发展趋势
大数据·数据库·物联网·rust·云计算·嵌入式实时数据库·汉斯出版社
产品设计大观7 小时前
6个宠物APP原型设计案例拆解:含AI问诊、商城、领养、托运
大数据·人工智能·ai·宠物·墨刀·app原型·宠物app
liliangcsdn8 小时前
LLM MoE 形式化探索
大数据·人工智能
天远云服9 小时前
Go 语言高并发实战:批量清洗天远借贷行为验证API (JRZQ8203) 的时间序列数据
大数据·api
Hello.Reader9 小时前
Flink 系统内置函数(Built-in Functions)分类、典型用法与选型建议
大数据·flink·excel