Spark---核心介绍

一、Spark核心

1、RDD

1)、概念:

RDD(Resilient Distributed Datest),弹性分布式数据集。

2)、RDD的五大特性:

1、RDD是由一系列的partition组成的

2、函数是作用在每一个partition(split)上的

3、RDD之间有一系列的依赖关系

4、分区器是作用在K、V格式的RDD上

5、RDD提供一系列最佳的计算位置

3)、RDD理解图:

4)、注意:

textFile方法底层封装的是读取MR读取文件的方式,读取文件之前先split,默认split大小是一个block大小。

RDD实际上不存储数据,为了方便理解,暂时理解为存储数据

什么是K,V格式的RDD?

如果RDD里面存储的数据都是二元组对象,那么这个RDD我们就叫做K,V格式的RDD

哪里体现RDD的弹性(容错)?

partition数量,大小没有限制,体现了RDD的弹性。

RDD之间依赖关系,可以基于上一个RDD重新计算出RDD。

哪里体现RDD的分布式

RDD是由Partition组成,partition是分布在不同节点上的。

RDD提供计算最佳位置,体现了数据本地化。体现了大数据中"计算移动数据不移动"的概念。

2、Java和Scala中创建RDD的方式

java:

sc.textFile(xx,minnumpartitions)
sc.parallelize(集合,num)
sc.parallelizePairs(Tuple2<xx,xx>集合,num)

Scala:

sc.textFile(xx,minnumpartitions)
sc.parallelize(集合,num)
sc.makeRDD(集合,num)

3、Spark任务执行原理

以上图中有四个机器节点,Driver和Worker是启动在节点上的进程,运行在JVM中的进程。

  • Driver与集群节点之间有频繁的通信。
  • Driver负责任务(tasks)的分发和结果的回收。任务的调度。如果task的计算结果非常大就不要回收了。会造成oom。
  • Worker是Standalone资源调度框架里面资源管理的从节点。也是JVM进程。
  • Master是Standalone资源调度框架里面资源管理的主节点。也是JVM进程。
相关推荐
m0_748247551 小时前
重学SpringBoot3-整合 Elasticsearch 8.x (二)使用Repository
大数据·elasticsearch·jenkins
姜来可期1 小时前
【分布式数据一致性算法】Gossip协议详解
分布式
begei1 小时前
理解vllm分布式推理服务中的多节点Multi-Node部署方式
分布式
南宫文凯1 小时前
Hadoop-HA(高可用)机制
大数据·hadoop·分布式·hadoop-ha
乐享数科2 小时前
乐享数科:供应链金融—三个不同阶段的融资模式
大数据·人工智能·金融
程序员古德2 小时前
《论大数据处理架构及其应用》审题技巧 - 系统架构设计师
大数据·应用·论文写作·lambda架构·处理架构
小赖同学啊3 小时前
jmeter 与大数据生态圈中的服务进行集成
大数据·jmeter
闲人编程4 小时前
Spark单机快速入门:从部署到数据分析实战
大数据
一个假的前端男4 小时前
RabbitMQ 消息队列
分布式·rabbitmq
liruiqiang054 小时前
DDD - 整洁架构
分布式·微服务·架构