Spark---核心介绍

一、Spark核心

1、RDD

1)、概念:

RDD(Resilient Distributed Datest),弹性分布式数据集。

2)、RDD的五大特性:

1、RDD是由一系列的partition组成的

2、函数是作用在每一个partition(split)上的

3、RDD之间有一系列的依赖关系

4、分区器是作用在K、V格式的RDD上

5、RDD提供一系列最佳的计算位置

3)、RDD理解图:

4)、注意:

textFile方法底层封装的是读取MR读取文件的方式,读取文件之前先split,默认split大小是一个block大小。

RDD实际上不存储数据,为了方便理解,暂时理解为存储数据

什么是K,V格式的RDD?

如果RDD里面存储的数据都是二元组对象,那么这个RDD我们就叫做K,V格式的RDD

哪里体现RDD的弹性(容错)?

partition数量,大小没有限制,体现了RDD的弹性。

RDD之间依赖关系,可以基于上一个RDD重新计算出RDD。

哪里体现RDD的分布式

RDD是由Partition组成,partition是分布在不同节点上的。

RDD提供计算最佳位置,体现了数据本地化。体现了大数据中"计算移动数据不移动"的概念。

2、Java和Scala中创建RDD的方式

复制代码
java:

sc.textFile(xx,minnumpartitions)
sc.parallelize(集合,num)
sc.parallelizePairs(Tuple2<xx,xx>集合,num)

Scala:

sc.textFile(xx,minnumpartitions)
sc.parallelize(集合,num)
sc.makeRDD(集合,num)

3、Spark任务执行原理

以上图中有四个机器节点,Driver和Worker是启动在节点上的进程,运行在JVM中的进程。

  • Driver与集群节点之间有频繁的通信。
  • Driver负责任务(tasks)的分发和结果的回收。任务的调度。如果task的计算结果非常大就不要回收了。会造成oom。
  • Worker是Standalone资源调度框架里面资源管理的从节点。也是JVM进程。
  • Master是Standalone资源调度框架里面资源管理的主节点。也是JVM进程。
相关推荐
Coder_Boy_7 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
2501_944934737 小时前
高职大数据技术专业,CDA和Python认证优先考哪个?
大数据·开发语言·python
九河云9 小时前
5秒开服,你的应用部署还卡在“加载中”吗?
大数据·人工智能·安全·机器学习·华为云
Gain_chance9 小时前
36-学习笔记尚硅谷数仓搭建-DWS层数据装载脚本
大数据·数据仓库·笔记·学习
每日新鲜事9 小时前
热销复盘:招商林屿缦岛203套售罄背后的客户逻辑分析
大数据·人工智能
AI架构全栈开发实战笔记10 小时前
Eureka 在大数据环境中的性能优化技巧
大数据·ai·eureka·性能优化
AI架构全栈开发实战笔记10 小时前
Eureka 对大数据领域服务依赖关系的梳理
大数据·ai·云原生·eureka
自挂东南枝�11 小时前
政企舆情大数据服务平台的“全域洞察中枢”
大数据
weisian15111 小时前
Elasticsearch-1--什么是ES?
大数据·elasticsearch·搜索引擎
LaughingZhu11 小时前
Product Hunt 每日热榜 | 2026-02-08
大数据·人工智能·经验分享·搜索引擎·产品运营