Python数据分析实战-爬取DouBan电影前250的相关信息并写入Excel表中(附源码和实现效果)

实现功能

在win10操作系统环境下,基于python3.10解释器,爬取豆瓣电影Top250的相关信息并将爬取的信息写入Excel表中。

实现代码

采集爬取模块:scraper.py

python 复制代码
import requests
from bs4 import BeautifulSoup
from typing import List
import re

class Movie:
    def __init__(self, detail_link: str, image_link: str, chinese_name: str, foreign_name: str, rating: float, review_count: int, overview: str, director: str, actors: str, year: int, region: str, category: str):
        self.detail_link = detail_link
        self.image_link = image_link
        self.chinese_name = chinese_name
        self.foreign_name = foreign_name
        self.rating = rating
        self.review_count = review_count
        self.overview = overview
        self.director = director
        self.actors = actors
        self.year = year
        self.region = region
        self.category = category

class Scraper:
    def __init__(self, base_url: str):
        self.base_url = base_url
        self.movies = []

    def scrape(self) -> List[Movie]:
        headers = {
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0",
            "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.7",
            "Cookie": "bid=m9sDMeuTWp4; ap_v=0,6.0; _pk_id.100001.4cf6=d6615bd2530852c6.1700447648.; _pk_ses.100001.4cf6=1; __utma=30149280.633232779.1700447649.1700447649.1700447649.1; __utmb=30149280.0.10.1700447649; __utmc=30149280; __utmz=30149280.1700447649.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); __utma=223695111.1435231277.1700447649.1700447649.1700447649.1; __utmb=223695111.0.10.1700447649; __utmc=223695111; __utmz=223695111.1700447649.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); _cc_id=748927837a892b664c1f1ab42fbe510a; panoramaId_expiry=1700534054317; panoramaId=18a92c0e9b136f927d0f0871ae33a9fb927a9d987bb8aa39557c58077684bc2c; panoramaIdType=panoDevice; _pbjs_userid_consent_data=3524755945110770; __gads=ID=7617c807b66fd695:T=1700447653:RT=1700448285:S=ALNI_MY0jxMNVX0GooLXe8dtdh74vfdLvQ; __gpi=UID=00000cdbaaf33934:T=1700447653:RT=1700448285:S=ALNI_MYekZkuVr46VHfZjhuhdX2kpLxOkw; cto_bundle=xIP-n181MjZFSVBGdlMlMkJEY3hvY3dycER1QjhISjdGU2dzOWxWZUFSMmNZd25VQ1Y0REdtaXZPdTh2aEJGUCUyQlo3WjVETzVNc2VUSFR3dHFXQVRRZU1ZejdOMXk5RDM4VjV1WkJsRWVXd1dQdjRvRE1JQjhEVkJQUVEyV0M1dlgzVkFBclZDTnJWM1g3MWZERDltRFR1UDZZNXp3JTNEJTNE; cto_bidid=vr7nBV8lMkZGJTJCOGVQWjhWREJUelpJYm1UdFBWaWd5bk9WT1JCdyUyRjlpN1duSWFZd3JPR2dkdmh1Q2tNa3NJa25rQTExSFlPM1p2YzdpT1U2cDE5UUowU3p1VHk3YkhVWWw4aFBmUExiZmtZdWtPS3U4byUzRA; cto_dna_bundle=14GGU181MjZFSVBGdlMlMkJEY3hvY3dycER1QiUyQmxhTVFwSEdNWHZ6OE5MZ2olMkJQbjlyODR2SWtIJTJCUGZmYm40Z3p5b1AxbSUyRkJKVDBVUVlXbGE1ZWRQeVUlMkJmeTR5dyUzRCUzRA",
        }

        for i in range(0, 10):  # 左闭右开
            self.url = self.base_url + str(i * 25)  # 字符串的拼接,调用获取页面信息的函数,10次(一共10页)
            response = requests.get(self.url, headers=headers)
            soup = BeautifulSoup(response.text, 'html.parser')
            movie_elements = soup.find_all('div', class_='item')

            for movie_element in movie_elements:
                detail_link = movie_element.find('a')['href']
                image_link = movie_element.find('img')['src']
                title_element = movie_element.find('div', class_='hd')
                chinese_name = title_element.find('span', class_='title').text
                foreign_name = title_element.find('span', class_='other').text.strip()[2:]
                rating = float(movie_element.find('span', class_='rating_num').text)

                # review_count = int(movie_element.find('span', class_='rating_people').find('span').text)
                review_count = re.findall(re.compile(r'<span>(\d*)人评价</span>'), str(movie_element))[0]

                overview = movie_element.find('span', class_='inq').text if movie_element.find('span', class_='inq') else ''
                info_text = movie_element.find('div', class_='bd').find('p').text
                director = info_text.split('导演: ')[1].split(' ')[0]
                actors = info_text.split('主演: ')[1].split(' ')[0] if '主演: ' in info_text else ''
                year_region_category = info_text.split('\n')[-2].strip().split('/')
                try:
                    year = int(year_region_category[0].strip())
                except ValueError as e:
                    print(e)
                    year = None
                region = year_region_category[-2].strip()
                category = year_region_category[-1].strip()

                movie = Movie(detail_link, image_link, chinese_name, foreign_name, rating, review_count, overview, director, actors, year, region, category)
                self.movies.append(movie)

        return self.movies

写入文件模块:writer.py

python 复制代码
import pandas as pd
from typing import List
from openpyxl import Workbook
from openpyxl.utils.dataframe import dataframe_to_rows
from scraper import Movie  # Import the Movie class

class Writer:
    def __init__(self, file_path: str):
        self.file_path = file_path

    def write(self, movies: List[Movie]):  # Specify the type of objects in the list
        data = {
            'Detail Link': [movie.detail_link for movie in movies],
            'Image Link': [movie.image_link for movie in movies],
            'Chinese Name': [movie.chinese_name for movie in movies],
            'Foreign Name': [movie.foreign_name for movie in movies],
            'Rating': [movie.rating for movie in movies],
            'Review Count': [movie.review_count for movie in movies],
            'Overview': [movie.overview for movie in movies],
            'Director': [movie.director for movie in movies],
            'Actors': [movie.actors for movie in movies],
            'Year': [movie.year for movie in movies],
            'Region': [movie.region for movie in movies],
            'Category': [movie.category for movie in movies]
        }
        df = pd.DataFrame(data)

        wb = Workbook()
        ws = wb.active

        for r in dataframe_to_rows(df, index=False, header=True):
            ws.append(r)

        wb.save(self.file_path)

主程序模块:main.py

python 复制代码
from scraper import Scraper, Movie
from writer import Writer

def main():
    # base_url = 'https://movie.douban.com/top250'
    base_url = "https://movie.douban.com/top250?start="
    file_path = 'douban_movies.xlsx'

    # Initialize scraper and scrape data
    scraper = Scraper(base_url)
    movies = scraper.scrape()

    # Initialize writer and write data to file
    writer = Writer(file_path)
    writer.write(movies)

if __name__ == '__main__':
    main()

实现效果

写在后面

本人读研期间发表5篇SCI数据挖掘相关论文,现在某研究院从事数据算法相关科研工作,对Python有一定认知和理解,会结合自身科研实践经历不定期分享关于python、机器学习、深度学习等基础知识与应用案例。

致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。

1、邀请三个朋友关注本订阅号或2、分享/在看任意订阅号的三篇文章即可在后台联系我获取相关数据集和源码。

2、关注"数据杂坛"公众号,点击"领资料"即可免费领取资料书籍。

3、如果对本文有疑问,或者有论文指导的相关需求,点击"联系我"添加作者微信直接交流。

相关推荐
湫ccc43 分钟前
《Python基础》之字符串格式化输出
开发语言·python
mqiqe1 小时前
Python MySQL通过Binlog 获取变更记录 恢复数据
开发语言·python·mysql
AttackingLin1 小时前
2024强网杯--babyheap house of apple2解法
linux·开发语言·python
哭泣的眼泪4082 小时前
解析粗糙度仪在工业制造及材料科学和建筑工程领域的重要性
python·算法·django·virtualenv·pygame
湫ccc2 小时前
《Python基础》之基本数据类型
开发语言·python
数据小爬虫@2 小时前
如何利用java爬虫获得淘宝商品评论
java·开发语言·爬虫
山海青风2 小时前
使用 OpenAI 进行数据探索性分析(EDA)
信息可视化·数据挖掘·数据分析
drebander3 小时前
使用 Java Stream 优雅实现List 转化为Map<key,Map<key,value>>
java·python·list
威威猫的栗子4 小时前
Python Turtle召唤童年:喜羊羊与灰太狼之懒羊羊绘画
开发语言·python
墨染风华不染尘4 小时前
python之开发笔记
开发语言·笔记·python