opencv-直方图均衡化

直方图均衡化是一种用于增强图像对比度的图像处理技术。它通过调整图像的灰度级别分布,使得图像中各个灰度级别的像素分布更均匀,从而提高图像的对比度。

在OpenCV中,你可以使用cv2.equalizeHist()函数来进行直方图均衡化。

以下是一个简单的示例:

python 复制代码
 
import cv2
import matplotlib.pyplot as plt

# 读取灰度图像
img = cv2.imread(r"C:\Users\mzd\Desktop\opencv\2.jpg", cv2.IMREAD_GRAYSCALE)

# 进行直方图均衡化
equ = cv2.equalizeHist(img)

# 绘制原始图像和均衡化后的图像
plt.figure(figsize=(8, 4))

plt.subplot(1, 2, 1)
plt.imshow(img, cmap='gray')
plt.title('Original Image')

plt.subplot(1, 2, 2)
plt.imshow(equ, cmap='gray')
plt.title('Equalized Image')

plt.show()

# 显示原始图像和均衡化后的图像
cv2.imshow('Original Image', img)
cv2.imshow('Equalized Image', equ)

# 等待用户按下任意键
cv2.waitKey(0)
cv2.destroyAllWindows()

在这个示例中,我们首先读取了一幅灰度图像,然后使用 cv2.equalizeHist() 函数进行直方图均衡化。最后,我们使用 Matplotlib 绘制了原始图像和均衡化后的图像。

cv2.equalizeHist() 是 OpenCV 中用于进行直方图均衡化的函数。该函数的基本语法如下:

python 复制代码
dst = cv2.equalizeHist(src)

参数说明:

  • src: 输入图像,通常为灰度图像。

返回值:

  • dst: 均衡化后的图像。

直方图均衡化可以在很大程度上提高图像的对比度,特别是当图像的灰度级别分布不均匀时。这在图像处理中经常用于改善图像的视觉效果。

相关推荐
Blossom.1183 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
DFminer4 小时前
【LLM】fast-api 流式生成测试
人工智能·机器人
郄堃Deep Traffic4 小时前
机器学习+城市规划第十四期:利用半参数地理加权回归来实现区域带宽不同的规划任务
人工智能·机器学习·回归·城市规划
GIS小天5 小时前
AI+预测3D新模型百十个定位预测+胆码预测+去和尾2025年6月7日第101弹
人工智能·算法·机器学习·彩票
阿部多瑞 ABU5 小时前
主流大语言模型安全性测试(三):阿拉伯语越狱提示词下的表现与分析
人工智能·安全·ai·语言模型·安全性测试
cnbestec5 小时前
Xela矩阵三轴触觉传感器的工作原理解析与应用场景
人工智能·线性代数·触觉传感器
不爱写代码的玉子6 小时前
HALCON透视矩阵
人工智能·深度学习·线性代数·算法·计算机视觉·矩阵·c#
sbc-study6 小时前
PCDF (Progressive Continuous Discrimination Filter)模块构建
人工智能·深度学习·计算机视觉
EasonZzzzzzz6 小时前
计算机视觉——相机标定
人工智能·数码相机·计算机视觉
猿小猴子6 小时前
主流 AI IDE 之一的 Cursor 介绍
ide·人工智能·cursor