opencv-直方图均衡化

直方图均衡化是一种用于增强图像对比度的图像处理技术。它通过调整图像的灰度级别分布,使得图像中各个灰度级别的像素分布更均匀,从而提高图像的对比度。

在OpenCV中,你可以使用cv2.equalizeHist()函数来进行直方图均衡化。

以下是一个简单的示例:

python 复制代码
 
import cv2
import matplotlib.pyplot as plt

# 读取灰度图像
img = cv2.imread(r"C:\Users\mzd\Desktop\opencv\2.jpg", cv2.IMREAD_GRAYSCALE)

# 进行直方图均衡化
equ = cv2.equalizeHist(img)

# 绘制原始图像和均衡化后的图像
plt.figure(figsize=(8, 4))

plt.subplot(1, 2, 1)
plt.imshow(img, cmap='gray')
plt.title('Original Image')

plt.subplot(1, 2, 2)
plt.imshow(equ, cmap='gray')
plt.title('Equalized Image')

plt.show()

# 显示原始图像和均衡化后的图像
cv2.imshow('Original Image', img)
cv2.imshow('Equalized Image', equ)

# 等待用户按下任意键
cv2.waitKey(0)
cv2.destroyAllWindows()

在这个示例中,我们首先读取了一幅灰度图像,然后使用 cv2.equalizeHist() 函数进行直方图均衡化。最后,我们使用 Matplotlib 绘制了原始图像和均衡化后的图像。

cv2.equalizeHist() 是 OpenCV 中用于进行直方图均衡化的函数。该函数的基本语法如下:

python 复制代码
dst = cv2.equalizeHist(src)

参数说明:

  • src: 输入图像,通常为灰度图像。

返回值:

  • dst: 均衡化后的图像。

直方图均衡化可以在很大程度上提高图像的对比度,特别是当图像的灰度级别分布不均匀时。这在图像处理中经常用于改善图像的视觉效果。

相关推荐
搞科研的小刘选手5 分钟前
【高录用|快检索】第二届图像处理、多媒体技术与机器学习国际学术会议(IPMML 2025)
人工智能·机器学习·多媒体·学术会议
秋邱16 分钟前
AI + 社区服务:智慧老年康养助手(轻量化落地方案)
人工智能·python·重构·ar·推荐算法·agi
leijiwen22 分钟前
Bsin X BDCM:从流量驱动到价值激励驱动的智能增长引擎
大数据·人工智能·web3
人工智能训练22 分钟前
Linux 系统核心快捷键表(可打印版)
linux·运维·服务器·人工智能·ubuntu·容器·openeuler
得贤招聘官25 分钟前
AI 重构招聘:从效率到精准决策
人工智能·重构
高锰酸钾_41 分钟前
机器学习基础 | KNN(K-近邻)
人工智能·机器学习
人邮异步社区41 分钟前
想要系统地学习扩散模型,应该怎么去做?
人工智能·学习·程序员·扩散模型
1***y17844 分钟前
区块链跨链桥、 跨链桥到底在解决什么问题?
大数据·人工智能·区块链
腾飞开源1 小时前
09_Spring AI 干货笔记之多模态
图像处理·人工智能·spring ai·多模态大语言模型·多模态api·媒体输入·文本响应
CM莫问1 小时前
详解机器学习经典模型(原理及应用)——岭回归
人工智能·python·算法·机器学习·回归