opencv-直方图均衡化

直方图均衡化是一种用于增强图像对比度的图像处理技术。它通过调整图像的灰度级别分布,使得图像中各个灰度级别的像素分布更均匀,从而提高图像的对比度。

在OpenCV中,你可以使用cv2.equalizeHist()函数来进行直方图均衡化。

以下是一个简单的示例:

python 复制代码
 
import cv2
import matplotlib.pyplot as plt

# 读取灰度图像
img = cv2.imread(r"C:\Users\mzd\Desktop\opencv\2.jpg", cv2.IMREAD_GRAYSCALE)

# 进行直方图均衡化
equ = cv2.equalizeHist(img)

# 绘制原始图像和均衡化后的图像
plt.figure(figsize=(8, 4))

plt.subplot(1, 2, 1)
plt.imshow(img, cmap='gray')
plt.title('Original Image')

plt.subplot(1, 2, 2)
plt.imshow(equ, cmap='gray')
plt.title('Equalized Image')

plt.show()

# 显示原始图像和均衡化后的图像
cv2.imshow('Original Image', img)
cv2.imshow('Equalized Image', equ)

# 等待用户按下任意键
cv2.waitKey(0)
cv2.destroyAllWindows()

在这个示例中,我们首先读取了一幅灰度图像,然后使用 cv2.equalizeHist() 函数进行直方图均衡化。最后,我们使用 Matplotlib 绘制了原始图像和均衡化后的图像。

cv2.equalizeHist() 是 OpenCV 中用于进行直方图均衡化的函数。该函数的基本语法如下:

python 复制代码
dst = cv2.equalizeHist(src)

参数说明:

  • src: 输入图像,通常为灰度图像。

返回值:

  • dst: 均衡化后的图像。

直方图均衡化可以在很大程度上提高图像的对比度,特别是当图像的灰度级别分布不均匀时。这在图像处理中经常用于改善图像的视觉效果。

相关推荐
Best_Me071 分钟前
理解AUROC,AP,F1-scroe,PRO
人工智能·机器学习
IT_陈寒4 分钟前
React 性能优化:5个实战技巧让首屏加载提升50%,开发者亲测有效!
前端·人工智能·后端
久未9 分钟前
Pytorch autoload机制自动加载树外扩展(Autoload Device Extension)
人工智能·pytorch·python
Apifox.11 分钟前
如何在 Apifox 中通过 AI 一键生成几十个测试用例?
人工智能·程序人生·ai·测试用例·ai编程
Learn Beyond Limits29 分钟前
TensorFlow Implementation of Content-Based Filtering|基于内容过滤的TensorFlow实现
人工智能·python·深度学习·机器学习·ai·tensorflow·吴恩达
是Yu欸33 分钟前
【AI视频】从单模型,到AI Agent工作流
人工智能·ai·ai作画·aigc·音视频·实时音视频
AI人工智能+44 分钟前
发票识别技术:结合OCR与AI技术,实现纸质票据高效数字化,推动企业智能化转型
人工智能·nlp·ocr·发票识别
用户5191495848451 小时前
Aniyomi扩展开发指南与Google Drive集成方案
人工智能·aigc
ezl1fe1 小时前
第零篇:把 Agent 跑起来的最小闭环
人工智能·后端·agent
LabVIEW开发1 小时前
LabVIEW机器视觉轮廓与曲率分析
计算机视觉·labview·labview知识·labview功能·labview程序