机器学习第10天:集成学习

文章目录

机器学习专栏

介绍

投票分类器

介绍

代码

核心代码

示例代码

软投票与硬投票

bagging与pasting

介绍

核心代码

随机森林

介绍

代码

结语


机器学习专栏

机器学习_Nowl的博客-CSDN博客

介绍

集成学习的思想是很直观的:多个人判断的结合往往比一个人的想法好

我们将在下面介绍几种常见的集成学习思想与方法

投票分类器

介绍

假如我们有一个分类任务,我们训练了多个模型:逻辑回归模型,SVM分类器,决策树分类器,然后我们看他们预测的结果,如果两个分类器预测为1,一个分类器预测为0,那么最后模型判断为1,采用的是一种少数服从多数的思想


代码

核心代码

引入投票分类器库,并创建模型

python 复制代码
from sklearn.ensemble import VotingClassifier


log_model = LogisticRegression()
tree_model = DecisionTreeClassifier()
svc_model = SVC()

voting_model = VotingClassifier(
    estimators=[('lr', log_model), ('df', tree_model), ('sf', svc_model)],
    voting='hard'
)

voting_model.fit(x, y)

例子中创建了三个基础分类器,最后再组合成一个投票分类器

示例代码

我们在鸢尾花数据集上测试不同模型的分类效果

python 复制代码
from sklearn.ensemble import VotingClassifier
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import load_iris
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split


iris = load_iris()
X = iris.data  # petal length and width
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

log_model = LogisticRegression()
tree_model = DecisionTreeClassifier()
svc_model = SVC()

voting_model = VotingClassifier(
    estimators=[('lr', log_model), ('df', tree_model), ('sf', svc_model)],
    voting='hard'
)

for model in (log_model, tree_model, svc_model, voting_model):
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    print(model, accuracy_score(y_test, y_pred))

运行结果

该示例代码可以看到各个模型在相同数据集上的性能测试,该示例的数据集较小 ,所以性能相差不大,当数据集增大时 ,集成学习的性能往往比单个模型更优


软投票与硬投票

当基本模型可以计算每个类的概率时,集成学习将概率进行平均计算得出结果,这种方法被称作软投票,当基本模型只能输出类别时,只能实行硬投票(以预测次数多的为最终结果)

bagging与pasting

介绍

除了投票分类这种集成方法,我们还有其他方法,例如:使用相同的基础分类器,但是每个分类器训练的样本将从数据集中随机抽取,最后再结合性能,若抽取样本放回,则叫做bagging方法,若不放回,则叫做pasting方法


核心代码

python 复制代码
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier


model = BaggingClassifier(
    DecisionTreeClassifier(), n_estimators=500,
    max_samples=100, bootstrap=True, n_jobs=-1
)

model.fit(X_train, y_train)

若基本分类器可以计算每个类的概率,BaggingClassifier自动执行软分类方法

bootstrap = True设置模型采用Bagging放回采样法

n_jobs参数代表用多少CPU内核进行训练何预测(-1代表使用所有可用内核)

设置为False时采用Pasting不放回采样法


随机森林

介绍

随机森林就是一种基本模型是决策树的Bagging方法,你可以使用BaggingClassifier集成DecisionTreeClassifier,也可以使用现成的库


代码

python 复制代码
from sklearn.ensemble import RandomForestClassifier


model = RandomForestClassifier(n_estimators=100, max_leaf_nodes=16, n_jobs=-1)
model.fit(X_train, y_train)

max_leaf_nodes限制了子分类器的最大叶子节点数量


结语

集成学习就是利用了一个很基本的思想:多数人的想法往往比一个人的想法更优,同时概率论中也有这样一个场景:实验次数越多,概率越接近本质

相关推荐
长空任鸟飞_阿康4 分钟前
在 Vue 3.5 中优雅地集成 wangEditor,并定制“AI 工具”下拉菜单(总结/润色/翻译)
前端·vue.js·人工智能
滑水滑成滑头11 分钟前
**发散创新:多智能体系统的探索与实践**随着人工智能技术的飞速发展,多智能体系统作为当今研究的热点领域,正受到越来越多关注
java·网络·人工智能·python
云布道师15 分钟前
阿里云 OSS MetaQuery 全面升级——新增内容和语义的检索能力,助力 AI 应用快速落地
人工智能·阿里云·云计算
m0_6501082429 分钟前
【论文精读】FlowVid:驯服不完美的光流,实现一致的视频到视频合成
人工智能·计算机视觉·扩散模型·视频编辑·视频生成·论文精读·不完美光流
radient40 分钟前
属于Agent的课本 - RAG
人工智能·后端·程序员
第七序章42 分钟前
【C + +】红黑树:全面剖析与深度学习
c语言·开发语言·数据结构·c++·人工智能
渡我白衣44 分钟前
未来的 AI 操作系统(三)——智能的中枢:从模型到系统的统一
人工智能·深度学习·ui·语言模型·人机交互
Blossom.1181 小时前
把 AI“缝”进布里:生成式编织神经网络让布料自带摄像头
人工智能·python·单片机·深度学习·神经网络·目标检测·机器学习
曾经的三心草1 小时前
深度学习1-简介-简单实现-手写数字识别
人工智能·深度学习