机器学习时候必须要分为训练集、验证集和测试集嘛

在机器学习中,为了准确评估模型的性能和找到最佳的超参数配置,通常将数据集划分为训练集、验证集和测试集。在这种情况下,验证集用于调参和模型选择,而测试集则用于最终的模型评估。

具体流程如下:

  1. 划分数据集:将数据集划分为训练集、验证集和测试集。一般三者比例是0.8:0.1:0.1或者0.6:0.2:0.2。

  2. 训练模型:使用训练集训练模型,并根据验证集上的性能指标进行调参和模型选择。例如,可以尝试不同的超参数组合,选择在验证集上性能最好的模型。

  3. 模型评估:在完成调参和模型选择后,使用测试集对最终选定的模型进行评估。测试集提供了一个客观的度量,用于衡量模型在未见过的数据上的泛化能力。

通过将测试集与验证集分开,可以避免在模型选择过程中过度拟合验证集,并获得更准确的模型性能估计。这样可以确保对模型的评估是基于未直接与模型相关联的数据进行的。

重要的是要注意,在整个调参和模型选择的过程中,测试集应该被严格保留,不参与任何形式的调优和选择。这样可以确保测试集的独立性,并对最终的模型性能提供一个真实的估计。

模板代码:

将数据集划分为训练集、验证集和测试集,比例是0.8:0.1:0.1。

复制代码
from sklearn.model_selection import train_test_split

#0.8:0.1:0.1 划分为训练集、验证集和测试集
# 将数据分为训练集和剩余数据(包括验证集和测试集)
X_train, X_remaining, y_train, y_remaining = train_test_split(X, y, test_size=0.2, random_state=0)
# 将剩余数据分为验证集和测试集
X_val, X_test, y_val, y_test = train_test_split(X_remaining, y_remaining, test_size=0.5, random_state=0)
相关推荐
AI蜗牛之家21 分钟前
Qwen系列之Qwen3解读:最强开源模型的细节拆解
人工智能·python
王上上24 分钟前
【论文阅读30】Bi-LSTM(2024)
论文阅读·人工智能·lstm
殇者知忧25 分钟前
【论文笔记】若干矿井粉尘检测算法概述
深度学习·神经网络·算法·随机森林·机器学习·支持向量机·计算机视觉
YunTM1 小时前
贝叶斯优化+LSTM+时序预测=Nature子刊!
人工智能·机器学习
舒一笑2 小时前
智能体革命:企业如何构建自主决策的AI代理?
人工智能
丁先生qaq3 小时前
热成像实例分割电力设备数据集(3类,838张)
人工智能·计算机视觉·目标跟踪·数据集
红衣小蛇妖3 小时前
神经网络-Day45
人工智能·深度学习·神经网络
JoannaJuanCV4 小时前
BEV和OCC学习-5:数据预处理流程
深度学习·目标检测·3d·occ·bev
KKKlucifer4 小时前
当AI遇上防火墙:新一代智能安全解决方案全景解析
人工智能
DisonTangor4 小时前
【小红书拥抱开源】小红书开源大规模混合专家模型——dots.llm1
人工智能·计算机视觉·开源·aigc