机器学习时候必须要分为训练集、验证集和测试集嘛

在机器学习中,为了准确评估模型的性能和找到最佳的超参数配置,通常将数据集划分为训练集、验证集和测试集。在这种情况下,验证集用于调参和模型选择,而测试集则用于最终的模型评估。

具体流程如下:

  1. 划分数据集:将数据集划分为训练集、验证集和测试集。一般三者比例是0.8:0.1:0.1或者0.6:0.2:0.2。

  2. 训练模型:使用训练集训练模型,并根据验证集上的性能指标进行调参和模型选择。例如,可以尝试不同的超参数组合,选择在验证集上性能最好的模型。

  3. 模型评估:在完成调参和模型选择后,使用测试集对最终选定的模型进行评估。测试集提供了一个客观的度量,用于衡量模型在未见过的数据上的泛化能力。

通过将测试集与验证集分开,可以避免在模型选择过程中过度拟合验证集,并获得更准确的模型性能估计。这样可以确保对模型的评估是基于未直接与模型相关联的数据进行的。

重要的是要注意,在整个调参和模型选择的过程中,测试集应该被严格保留,不参与任何形式的调优和选择。这样可以确保测试集的独立性,并对最终的模型性能提供一个真实的估计。

模板代码:

将数据集划分为训练集、验证集和测试集,比例是0.8:0.1:0.1。

复制代码
from sklearn.model_selection import train_test_split

#0.8:0.1:0.1 划分为训练集、验证集和测试集
# 将数据分为训练集和剩余数据(包括验证集和测试集)
X_train, X_remaining, y_train, y_remaining = train_test_split(X, y, test_size=0.2, random_state=0)
# 将剩余数据分为验证集和测试集
X_val, X_test, y_val, y_test = train_test_split(X_remaining, y_remaining, test_size=0.5, random_state=0)
相关推荐
红队it11 分钟前
【机器学习算法】基于python商品销量数据分析大屏可视化预测系统(完整系统源码+数据库+开发笔记+详细启动教程)✅
python·机器学习·数据分析
思陌Ai算法定制28 分钟前
图神经网络+多模态:视频动作分割的轻量高效新解法
人工智能·深度学习·神经网络·机器学习·音视频·医学影像
rocksun44 分钟前
如何构建自己的简单AI代理来排除Kubernetes故障
人工智能·kubernetes
weixin_445238121 小时前
Tensorflow2实现: LSTM-火灾温度预测
人工智能·tensorflow·lstm
nuise_1 小时前
李沐《动手学深度学习》 | 线性神经网络-线性回归
深度学习·神经网络·线性回归
seaeress1 小时前
opencv(C++)处理图像颜色
c++·人工智能·opencv
一尘之中1 小时前
耳根圆通与禅定的交融与分野
人工智能
结冰架构2 小时前
【AI提示词】Emoji风格排版艺术与设计哲学
大数据·人工智能·ai·提示词
zandy10112 小时前
飞书集成衡石ChatBot实战:如何10分钟搭建一个业务数据问答机器人?
大数据·人工智能·机器人·飞书·chatbot·衡石科技
机器之心2 小时前
200B参数击败满血DeepSeek-R1,字节豆包推理模型Seed-Thinking-v1.5要来了
人工智能