机器学习时候必须要分为训练集、验证集和测试集嘛

在机器学习中,为了准确评估模型的性能和找到最佳的超参数配置,通常将数据集划分为训练集、验证集和测试集。在这种情况下,验证集用于调参和模型选择,而测试集则用于最终的模型评估。

具体流程如下:

  1. 划分数据集:将数据集划分为训练集、验证集和测试集。一般三者比例是0.8:0.1:0.1或者0.6:0.2:0.2。

  2. 训练模型:使用训练集训练模型,并根据验证集上的性能指标进行调参和模型选择。例如,可以尝试不同的超参数组合,选择在验证集上性能最好的模型。

  3. 模型评估:在完成调参和模型选择后,使用测试集对最终选定的模型进行评估。测试集提供了一个客观的度量,用于衡量模型在未见过的数据上的泛化能力。

通过将测试集与验证集分开,可以避免在模型选择过程中过度拟合验证集,并获得更准确的模型性能估计。这样可以确保对模型的评估是基于未直接与模型相关联的数据进行的。

重要的是要注意,在整个调参和模型选择的过程中,测试集应该被严格保留,不参与任何形式的调优和选择。这样可以确保测试集的独立性,并对最终的模型性能提供一个真实的估计。

模板代码:

将数据集划分为训练集、验证集和测试集,比例是0.8:0.1:0.1。

复制代码
from sklearn.model_selection import train_test_split

#0.8:0.1:0.1 划分为训练集、验证集和测试集
# 将数据分为训练集和剩余数据(包括验证集和测试集)
X_train, X_remaining, y_train, y_remaining = train_test_split(X, y, test_size=0.2, random_state=0)
# 将剩余数据分为验证集和测试集
X_val, X_test, y_val, y_test = train_test_split(X_remaining, y_remaining, test_size=0.5, random_state=0)
相关推荐
Fleshy数模1 分钟前
从欠拟合到正则化:用逻辑回归破解信用卡失信检测的召回率困境
算法·机器学习·逻辑回归
ZCXZ12385296a5 分钟前
【计算机视觉】基于YOLO13-C3k2-ConvAttn的电动汽车充电桩车位线自动检测与定位系统
人工智能·计算机视觉
qwerasda1238529 分钟前
游戏场景中的敌方目标检测与定位实战使用mask-rcnn_regnetx模型实现
人工智能·目标检测·游戏
硅基流动12 分钟前
从云原生到 AI 的跃迁探索之路|开发者说
大数据·人工智能·云原生
jackywine616 分钟前
零样本学习(Zero-Shot Learning)和少样本学习(Few-Shot Learning)有何区别?AI 是怎么“猜“出来的
人工智能·机器学习
犀思云19 分钟前
构建全球化多云网格:FusionWAN NaaS 在高可用基础设施中的工程实践
运维·网络·人工智能·系统架构·机器人
jinyeyiqi202623 分钟前
气象监测设备如何助力精细化环境管理?金叶仪器智能气象站方案探讨
人工智能·机器学习·自动驾驶
weixin_4166600727 分钟前
AI 导出 Word 不正规?10 类文档样式模板(可直接套用,含字体/字号/行距/缩进)
人工智能·word·论文·排版·数学公式
小鸡吃米…32 分钟前
机器学习 - 感知机(Perceptron)
人工智能·python·机器学习
小鸡吃米…36 分钟前
机器学习 - 轮次(Epoch)
人工智能·深度学习·机器学习