PyTorch多GPU训练时同步梯度是mean还是sum?

PyTorch 通过两种方式可以进行多GPU训练: DataParallel, DistributedDataParallel. 当使用DataParallel的时候, 梯度的计算结果和在单卡上跑是一样的, 对每个数据计算出来的梯度进行累加. 当使用DistributedDataParallel的时候, 每个卡单独计算梯度, 然后多卡的梯度再进行平均.

下面是实验验证:

DataParallel

python 复制代码
import torch
import os
import torch.nn as nn

def main():
    model = nn.Linear(2, 3).cuda()
    model = torch.nn.DataParallel(model, device_ids=[0, 1])
    input = torch.rand(2, 2)
    labels = torch.tensor([[1, 0, 0], [0, 1, 0]]).cuda()
    (model(input) * labels).sum().backward()
    print('input', input)
    print([p.grad for p in model.parameters()])


if __name__=="__main__":
    main()

执行CUDA_VISIBLE_DEVICES=0,1 python t.py可以看到输出, 代码中对两个样本分别求梯度, 梯度等于样本的值, DataParallel把两个样本的梯度累加起来在不同GPU中同步.

bash 复制代码
input tensor([[0.4362, 0.4574],
        [0.2052, 0.2362]])
[tensor([[0.4363, 0.4573],
        [0.2052, 0.2362],
        [0.0000, 0.0000]], device='cuda:0'), tensor([1., 1., 0.], device='cuda:0')]

DistributedDataParallel

python 复制代码
import torch
import os
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.optim as optim
from torch.nn.parallel import DistributedDataParallel as DDP


def example(rank, world_size):
    # create default process group
    dist.init_process_group("gloo", rank=rank, world_size=world_size)
    # create local model
    model = nn.Linear(2, 3).to(rank)
    print('model param', 'rank', rank, [p for p in model.parameters()])
    # construct DDP model
    ddp_model = DDP(model, device_ids=[rank])
    print('ddp model param', 'rank', rank, [p for p in ddp_model.parameters()])
    # forward pass
    input = torch.randn(1, 2).to(rank)
    outputs = ddp_model(input)
    labels = torch.randn(1, 3).to(rank) * 0
    labels[0, rank] = 1
    # backward pass
    (outputs * labels).sum().backward()
    print('rank', rank, 'grad', [p.grad for p in ddp_model.parameters()])
    print('rank', rank, 'input', input, 'outputs', outputs)
    print('rank', rank, 'labels', labels)
    # update parameters
    optimizer.step()

def main():
    world_size = 2
    mp.spawn(example,
        args=(world_size,),
        nprocs=world_size,
        join=True)

if __name__=="__main__":
    # Environment variables which need to be
    # set when using c10d's default "env"
    # initialization mode.
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "29504"
    main()

执行CUDA_VISIBLE_DEVICES=0,1 python t1.py可以看到输出, 代码中对两个样本分别求梯度, 梯度等于样本的值, 最终的梯度是各个GPU的梯度的平均.

bash 复制代码
model param rank 0 [Parameter containing:
tensor([[-0.4819,  0.0253],
        [ 0.0858,  0.2256],
        [ 0.5614,  0.2702]], device='cuda:0', requires_grad=True), Parameter containing:
tensor([-0.0090,  0.4461, -0.3493], device='cuda:0', requires_grad=True)]
model param rank 1 [Parameter containing:
tensor([[-0.3737,  0.3062],
        [ 0.6450,  0.2930],
        [-0.2422,  0.2089]], device='cuda:1', requires_grad=True), Parameter containing:
tensor([-0.5868,  0.2106, -0.4461], device='cuda:1', requires_grad=True)]
ddp model param rank 1 [Parameter containing:
tensor([[-0.4819,  0.0253],
        [ 0.0858,  0.2256],
        [ 0.5614,  0.2702]], device='cuda:1', requires_grad=True), Parameter containing:
tensor([-0.0090,  0.4461, -0.3493], device='cuda:1', requires_grad=True)]
ddp model param rank 0 [Parameter containing:
tensor([[-0.4819,  0.0253],
        [ 0.0858,  0.2256],
        [ 0.5614,  0.2702]], device='cuda:0', requires_grad=True), Parameter containing:
tensor([-0.0090,  0.4461, -0.3493], device='cuda:0', requires_grad=True)]
rank 1 grad [tensor([[ 0.2605,  0.1631],
        [-0.0934, -0.5308],
        [ 0.0000,  0.0000]], device='cuda:1'), tensor([0.5000, 0.5000, 0.0000], device='cuda:1')]
rank 0 grad [tensor([[ 0.2605,  0.1631],
        [-0.0934, -0.5308],
        [ 0.0000,  0.0000]], device='cuda:0'), tensor([0.5000, 0.5000, 0.0000], device='cuda:0')]
rank 1 input tensor([[-0.1868, -1.0617]], device='cuda:1') outputs tensor([[ 0.0542,  0.1906, -0.7411]], device='cuda:1',
       grad_fn=<AddmmBackward0>)
rank 0 input tensor([[0.5209, 0.3261]], device='cuda:0') outputs tensor([[-0.2518,  0.5644,  0.0314]], device='cuda:0',
       grad_fn=<AddmmBackward0>)
rank 1 labels tensor([[-0., 1., -0.]], device='cuda:1')
rank 0 labels tensor([[1., 0., -0.]], device='cuda:0')
相关推荐
保持学习ing21 分钟前
Spring注解开发
java·深度学习·spring·框架
字节跳动_离青24 分钟前
智能的路径
人工智能
王上上34 分钟前
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
论文阅读·人工智能·cnn
Channing Lewis1 小时前
如果科技足够发达,是否还需要维持自然系统(例如生物多样性)中那种‘冗余’和‘多样性’,还是可以只保留最优解?
大数据·人工智能·科技
禺垣1 小时前
区块链技术概述
大数据·人工智能·分布式·物联网·去中心化·区块链
IT科技那点事儿1 小时前
引领AI安全新时代 Accelerate 2025北亚巡展·北京站成功举办
人工智能·安全
新智元1 小时前
美 IT 业裁员狂飙 35%,「硅谷梦」彻底崩塌!打工人怒喷 PIP
人工智能·openai
新智元1 小时前
乔布斯挚友去世!胰腺癌再夺硅谷天才,曾写下苹果「创世代码」
人工智能·openai
春末的南方城市1 小时前
中山大学&美团&港科大提出首个音频驱动多人对话视频生成MultiTalk,输入一个音频和提示,即可生成对应唇部、音频交互视频。
人工智能·python·深度学习·计算机视觉·transformer
春末的南方城市1 小时前
Ctrl-Crash 助力交通安全:可控生成逼真车祸视频,防患于未然
人工智能·计算机视觉·自然语言处理·aigc·音视频