PyTorch多GPU训练时同步梯度是mean还是sum?

PyTorch 通过两种方式可以进行多GPU训练: DataParallel, DistributedDataParallel. 当使用DataParallel的时候, 梯度的计算结果和在单卡上跑是一样的, 对每个数据计算出来的梯度进行累加. 当使用DistributedDataParallel的时候, 每个卡单独计算梯度, 然后多卡的梯度再进行平均.

下面是实验验证:

DataParallel

python 复制代码
import torch
import os
import torch.nn as nn

def main():
    model = nn.Linear(2, 3).cuda()
    model = torch.nn.DataParallel(model, device_ids=[0, 1])
    input = torch.rand(2, 2)
    labels = torch.tensor([[1, 0, 0], [0, 1, 0]]).cuda()
    (model(input) * labels).sum().backward()
    print('input', input)
    print([p.grad for p in model.parameters()])


if __name__=="__main__":
    main()

执行CUDA_VISIBLE_DEVICES=0,1 python t.py可以看到输出, 代码中对两个样本分别求梯度, 梯度等于样本的值, DataParallel把两个样本的梯度累加起来在不同GPU中同步.

bash 复制代码
input tensor([[0.4362, 0.4574],
        [0.2052, 0.2362]])
[tensor([[0.4363, 0.4573],
        [0.2052, 0.2362],
        [0.0000, 0.0000]], device='cuda:0'), tensor([1., 1., 0.], device='cuda:0')]

DistributedDataParallel

python 复制代码
import torch
import os
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
import torch.optim as optim
from torch.nn.parallel import DistributedDataParallel as DDP


def example(rank, world_size):
    # create default process group
    dist.init_process_group("gloo", rank=rank, world_size=world_size)
    # create local model
    model = nn.Linear(2, 3).to(rank)
    print('model param', 'rank', rank, [p for p in model.parameters()])
    # construct DDP model
    ddp_model = DDP(model, device_ids=[rank])
    print('ddp model param', 'rank', rank, [p for p in ddp_model.parameters()])
    # forward pass
    input = torch.randn(1, 2).to(rank)
    outputs = ddp_model(input)
    labels = torch.randn(1, 3).to(rank) * 0
    labels[0, rank] = 1
    # backward pass
    (outputs * labels).sum().backward()
    print('rank', rank, 'grad', [p.grad for p in ddp_model.parameters()])
    print('rank', rank, 'input', input, 'outputs', outputs)
    print('rank', rank, 'labels', labels)
    # update parameters
    optimizer.step()

def main():
    world_size = 2
    mp.spawn(example,
        args=(world_size,),
        nprocs=world_size,
        join=True)

if __name__=="__main__":
    # Environment variables which need to be
    # set when using c10d's default "env"
    # initialization mode.
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "29504"
    main()

执行CUDA_VISIBLE_DEVICES=0,1 python t1.py可以看到输出, 代码中对两个样本分别求梯度, 梯度等于样本的值, 最终的梯度是各个GPU的梯度的平均.

bash 复制代码
model param rank 0 [Parameter containing:
tensor([[-0.4819,  0.0253],
        [ 0.0858,  0.2256],
        [ 0.5614,  0.2702]], device='cuda:0', requires_grad=True), Parameter containing:
tensor([-0.0090,  0.4461, -0.3493], device='cuda:0', requires_grad=True)]
model param rank 1 [Parameter containing:
tensor([[-0.3737,  0.3062],
        [ 0.6450,  0.2930],
        [-0.2422,  0.2089]], device='cuda:1', requires_grad=True), Parameter containing:
tensor([-0.5868,  0.2106, -0.4461], device='cuda:1', requires_grad=True)]
ddp model param rank 1 [Parameter containing:
tensor([[-0.4819,  0.0253],
        [ 0.0858,  0.2256],
        [ 0.5614,  0.2702]], device='cuda:1', requires_grad=True), Parameter containing:
tensor([-0.0090,  0.4461, -0.3493], device='cuda:1', requires_grad=True)]
ddp model param rank 0 [Parameter containing:
tensor([[-0.4819,  0.0253],
        [ 0.0858,  0.2256],
        [ 0.5614,  0.2702]], device='cuda:0', requires_grad=True), Parameter containing:
tensor([-0.0090,  0.4461, -0.3493], device='cuda:0', requires_grad=True)]
rank 1 grad [tensor([[ 0.2605,  0.1631],
        [-0.0934, -0.5308],
        [ 0.0000,  0.0000]], device='cuda:1'), tensor([0.5000, 0.5000, 0.0000], device='cuda:1')]
rank 0 grad [tensor([[ 0.2605,  0.1631],
        [-0.0934, -0.5308],
        [ 0.0000,  0.0000]], device='cuda:0'), tensor([0.5000, 0.5000, 0.0000], device='cuda:0')]
rank 1 input tensor([[-0.1868, -1.0617]], device='cuda:1') outputs tensor([[ 0.0542,  0.1906, -0.7411]], device='cuda:1',
       grad_fn=<AddmmBackward0>)
rank 0 input tensor([[0.5209, 0.3261]], device='cuda:0') outputs tensor([[-0.2518,  0.5644,  0.0314]], device='cuda:0',
       grad_fn=<AddmmBackward0>)
rank 1 labels tensor([[-0., 1., -0.]], device='cuda:1')
rank 0 labels tensor([[1., 0., -0.]], device='cuda:0')
相关推荐
吴佳浩1 小时前
LangChain 深入
人工智能·python·langchain
LplLpl114 小时前
AI 算法竞赛通关指南:基于深度学习的图像分类模型优化实战
大数据·人工智能·机器学习
依米s4 小时前
各年度人工智能大会WAIC核心议题(持续更新)
人工智能·人工智能+·waic·人工智能大会+
小徐xxx4 小时前
Mamba架构讲解
深度学习·mamba·学习记录
python机器学习建模5 小时前
22篇经典金融风控论文复现(2025年11月更新)
人工智能·机器学习·论文·期刊·金融风控
Codebee5 小时前
深度解析AI编程技术:从原理到实践,手把手教你落地
人工智能·设计模式·开源
武汉唯众智创5 小时前
基于五级工的人工智能训练师教学解决方案
人工智能·ai·产教融合·人工智能训练师·五级工·ai训练师
执笔论英雄5 小时前
【RL】python协程
java·网络·人工智能·python·设计模式
你好~每一天6 小时前
未来3年,最值得拿下的5个AI证书!
数据结构·人工智能·算法·sqlite·hbase·散列表·模拟退火算法
老前端的功夫6 小时前
前端技术选型的理性之道:构建可量化的ROI评估模型
前端·javascript·人工智能·ubuntu·前端框架