【hive】列转行—collect_set()/collect_list()/concat_ws()函数的使用场景

文章目录


一、collect_set()/collect_list():

在 Hive 中想实现按某字段分组,对另外字段进行合并,可通过collect_list()或者collect_set()实现。

  • collect_set()函数与collect_list()函数:列转行专用函数,都是将分组中的某列转为一个数组返回。有时为了字段拼接效果,多和concat_ws()函数连用。

  • collect_set()与collect_list()的区别:

collect_list()函数 - - 不去重
collect_set()函数 - - 去重

二、实际运用

1、创建测试表及插入数据 :

sql 复制代码
drop table test_1;
create table test_1(
id string,
cur_day string,
rule string
) 
row format delimited fields terminated by ',';

insert into test_1 values
('a','20230809','501'),('a','20230811','502'),('a','20230812','503'),('a','20230812','501'),('a','20230813','512'),('b','20230809','511'),('b','20230811','512'),('b','20230812','513'),('b','20230812','511'),('b','20230813','512'),('b','20230809','511'),('c','20230811','512'),('c','20230812','513'),('c','20230812','511'),('c','20230813','512');

把同一分组的不同行的数据聚合成一个行

举例1:按照id,cur_day分组,取出每个id对应的所有rule(不去重)。

sql 复制代码
select id,cur_day,collect_list(rule) as rule_total  from test_1 group by id,cur_day order by id,cur_day;

举例2:按照id,cur_day分组,取出每个id对应的所有rule(去重)。

sql 复制代码
select id,cur_day,collect_set(rule) as rule_total from test_1 group by id,cur_day order by id,cur_day;
  • 用下标可以随机取某一个
sql 复制代码
select id,cur_day,collect_list(rule)[0] as rule_one from test_1 group by id,cur_day order by id,cur_day;

select id,cur_day,collect_set(rule)[0] as rule_one from test_1 group by id,cur_day order by id,cur_day;
  • 聚合后的中的值用'|'分隔开
sql 复制代码
select id,cur_day,concat_ws('|',collect_list(rule)) as rule_total from test_1 group by id,cur_day order by id,cur_day;

select id,cur_day,concat_ws('|',collect_set(rule)) as rule_total from test_1 group by id,cur_day order by id,cur_day;
  • 例子
  • spark-sql : COLLECT_LIST里边字段起别名.(as等其他方式都用过,都报错.
    最后用子查询来解决)
sql 复制代码
SELECT fenceCode,
       COLLECT_LIST(STRUCT(vehicleNo, plateColor, enterTime, levaeTime, trans)) AS actInfos
FROM (
    SELECT fence_code AS fenceCode,
           veh_no AS vehicleNo,
           veh_color AS plateColor,
           enter_time AS enterTime,
           out_time AS levaeTime,
           trans
    FROM mid.ct_fence_into_out_dt where dt = 20230911  
) subquery
GROUP BY fenceCode;

总结

如果此篇文章有帮助到您, 希望打大佬们能关注点赞收藏评论支持一波,非常感谢大家!

如果有不对的地方请指正!!!

参考1

相关推荐
cxr8282 小时前
基于Claude Code的 规范驱动开发(SDD)指南
人工智能·hive·驱动开发·敏捷流程·智能体
Lx35212 小时前
Hadoop数据处理模式:批处理与流处理结合技巧
大数据·hadoop
皆过客,揽星河12 小时前
Linux上安装MySQL8详细教程
android·linux·hadoop·mysql·linux安装mysql·数据库安装·详细教程
core51215 小时前
Hive实战(二)
数据仓库·hive·hadoop
奋斗的蛋黄17 小时前
大数据与云计算知识点
大数据·hadoop·云计算
计算机编程-吉哥1 天前
大数据毕业设计-基于Python的中文起点网小说数据分析平台(高分计算机毕业设计选题·定制开发·真正大数据)
大数据·hadoop·计算机毕业设计选题·机器学习毕业设计·大数据毕业设计·大数据毕业设计选题推荐·大数据毕设项目
Agatha方艺璇1 天前
Hive基础简介
数据仓库·hive·hadoop
IT研究室1 天前
大数据毕业设计选题推荐-基于大数据的国内旅游景点游客数据分析系统-Spark-Hadoop-Bigdata
大数据·hadoop·spark·毕业设计·源码·数据可视化·bigdata
Lx3521 天前
YARN资源调度优化:最大化集群利用率
大数据·hadoop
Leo.yuan2 天前
不同数据仓库模型有什么不同?企业如何选择适合的数据仓库模型?
大数据·数据库·数据仓库·信息可视化·spark