【hive】列转行—collect_set()/collect_list()/concat_ws()函数的使用场景

文章目录


一、collect_set()/collect_list():

在 Hive 中想实现按某字段分组,对另外字段进行合并,可通过collect_list()或者collect_set()实现。

  • collect_set()函数与collect_list()函数:列转行专用函数,都是将分组中的某列转为一个数组返回。有时为了字段拼接效果,多和concat_ws()函数连用。

  • collect_set()与collect_list()的区别:

collect_list()函数 - - 不去重
collect_set()函数 - - 去重

二、实际运用

1、创建测试表及插入数据 :

sql 复制代码
drop table test_1;
create table test_1(
id string,
cur_day string,
rule string
) 
row format delimited fields terminated by ',';

insert into test_1 values
('a','20230809','501'),('a','20230811','502'),('a','20230812','503'),('a','20230812','501'),('a','20230813','512'),('b','20230809','511'),('b','20230811','512'),('b','20230812','513'),('b','20230812','511'),('b','20230813','512'),('b','20230809','511'),('c','20230811','512'),('c','20230812','513'),('c','20230812','511'),('c','20230813','512');

把同一分组的不同行的数据聚合成一个行

举例1:按照id,cur_day分组,取出每个id对应的所有rule(不去重)。

sql 复制代码
select id,cur_day,collect_list(rule) as rule_total  from test_1 group by id,cur_day order by id,cur_day;

举例2:按照id,cur_day分组,取出每个id对应的所有rule(去重)。

sql 复制代码
select id,cur_day,collect_set(rule) as rule_total from test_1 group by id,cur_day order by id,cur_day;
  • 用下标可以随机取某一个
sql 复制代码
select id,cur_day,collect_list(rule)[0] as rule_one from test_1 group by id,cur_day order by id,cur_day;

select id,cur_day,collect_set(rule)[0] as rule_one from test_1 group by id,cur_day order by id,cur_day;
  • 聚合后的中的值用'|'分隔开
sql 复制代码
select id,cur_day,concat_ws('|',collect_list(rule)) as rule_total from test_1 group by id,cur_day order by id,cur_day;

select id,cur_day,concat_ws('|',collect_set(rule)) as rule_total from test_1 group by id,cur_day order by id,cur_day;
  • 例子
  • spark-sql : COLLECT_LIST里边字段起别名.(as等其他方式都用过,都报错.
    最后用子查询来解决)
sql 复制代码
SELECT fenceCode,
       COLLECT_LIST(STRUCT(vehicleNo, plateColor, enterTime, levaeTime, trans)) AS actInfos
FROM (
    SELECT fence_code AS fenceCode,
           veh_no AS vehicleNo,
           veh_color AS plateColor,
           enter_time AS enterTime,
           out_time AS levaeTime,
           trans
    FROM mid.ct_fence_into_out_dt where dt = 20230911  
) subquery
GROUP BY fenceCode;

总结

如果此篇文章有帮助到您, 希望打大佬们能关注点赞收藏评论支持一波,非常感谢大家!

如果有不对的地方请指正!!!

参考1

相关推荐
亲爱的非洲野猪11 小时前
SpringBoot启动流程深度剖析:从@SpringBootApplication到Servlet容器就绪
hive·spring boot·servlet
星火开发设计14 小时前
深入浅出HDFS:分布式文件系统核心原理与实践解析
大数据·数据库·hadoop·学习·hdfs·分布式数据库·知识
`林中水滴`16 小时前
Hive系列:Hive 整合 HBase
hive·hbase
Hello.Reader16 小时前
Hadoop Formats 在 Flink 里复用 Hadoop InputFormat(flink-hadoop-compatibility)
大数据·hadoop·flink
s***872716 小时前
TCP/IP协议栈深度解析技术文章大纲
hive·spring boot
橙露17 小时前
大数据分析入门:Hadoop 生态系统与 Python 结合的分布式数据处理实践
hadoop·分布式·数据分析
CoookeCola17 小时前
从人脸检测到音频偏移:基于SyncNet的音视频偏移计算与人脸轨迹追踪技术解析
数据仓库·人工智能·目标检测·计算机视觉·数据挖掘
zgl_200537791 天前
ZGLanguage 解析SQL数据血缘 之 Python + Echarts 显示SQL结构图
大数据·数据库·数据仓库·hadoop·sql·代码规范·源代码管理
飞Link1 天前
【Sqoop】Sqoop 使用教程:从原理到实战的完整指南
数据库·hadoop·sqoop
SelectDB技术团队1 天前
驾驭 CPU 与编译器:Apache Doris 实现极致性能的底层逻辑
数据库·数据仓库·人工智能·sql·apache