【hive】列转行—collect_set()/collect_list()/concat_ws()函数的使用场景

文章目录


一、collect_set()/collect_list():

在 Hive 中想实现按某字段分组,对另外字段进行合并,可通过collect_list()或者collect_set()实现。

  • collect_set()函数与collect_list()函数:列转行专用函数,都是将分组中的某列转为一个数组返回。有时为了字段拼接效果,多和concat_ws()函数连用。

  • collect_set()与collect_list()的区别:

collect_list()函数 - - 不去重
collect_set()函数 - - 去重

二、实际运用

1、创建测试表及插入数据 :

sql 复制代码
drop table test_1;
create table test_1(
id string,
cur_day string,
rule string
) 
row format delimited fields terminated by ',';

insert into test_1 values
('a','20230809','501'),('a','20230811','502'),('a','20230812','503'),('a','20230812','501'),('a','20230813','512'),('b','20230809','511'),('b','20230811','512'),('b','20230812','513'),('b','20230812','511'),('b','20230813','512'),('b','20230809','511'),('c','20230811','512'),('c','20230812','513'),('c','20230812','511'),('c','20230813','512');

把同一分组的不同行的数据聚合成一个行

举例1:按照id,cur_day分组,取出每个id对应的所有rule(不去重)。

sql 复制代码
select id,cur_day,collect_list(rule) as rule_total  from test_1 group by id,cur_day order by id,cur_day;

举例2:按照id,cur_day分组,取出每个id对应的所有rule(去重)。

sql 复制代码
select id,cur_day,collect_set(rule) as rule_total from test_1 group by id,cur_day order by id,cur_day;
  • 用下标可以随机取某一个
sql 复制代码
select id,cur_day,collect_list(rule)[0] as rule_one from test_1 group by id,cur_day order by id,cur_day;

select id,cur_day,collect_set(rule)[0] as rule_one from test_1 group by id,cur_day order by id,cur_day;
  • 聚合后的中的值用'|'分隔开
sql 复制代码
select id,cur_day,concat_ws('|',collect_list(rule)) as rule_total from test_1 group by id,cur_day order by id,cur_day;

select id,cur_day,concat_ws('|',collect_set(rule)) as rule_total from test_1 group by id,cur_day order by id,cur_day;
  • 例子
  • spark-sql : COLLECT_LIST里边字段起别名.(as等其他方式都用过,都报错.
    最后用子查询来解决)
sql 复制代码
SELECT fenceCode,
       COLLECT_LIST(STRUCT(vehicleNo, plateColor, enterTime, levaeTime, trans)) AS actInfos
FROM (
    SELECT fence_code AS fenceCode,
           veh_no AS vehicleNo,
           veh_color AS plateColor,
           enter_time AS enterTime,
           out_time AS levaeTime,
           trans
    FROM mid.ct_fence_into_out_dt where dt = 20230911  
) subquery
GROUP BY fenceCode;

总结

如果此篇文章有帮助到您, 希望打大佬们能关注点赞收藏评论支持一波,非常感谢大家!

如果有不对的地方请指正!!!

参考1

相关推荐
最初的↘那颗心37 分钟前
Flink Stream API 源码走读 - print()
java·大数据·hadoop·flink·实时计算
君不见,青丝成雪2 小时前
hadoop技术栈(九)Hbase替代方案
大数据·hadoop·hbase
晴天彩虹雨2 小时前
存算分离与云原生:数据平台的新基石
大数据·hadoop·云原生·spark
yatingliu20193 小时前
HiveQL | 个人学习笔记
hive·笔记·sql·学习
SelectDB技术团队5 小时前
Apache Doris 在菜鸟的大规模湖仓业务场景落地实践
数据库·数据仓库·数据分析·apache doris·菜鸟技术
程序员小羊!7 小时前
数据仓库&OLTP&OLAP&维度讲解
数据仓库
最初的↘那颗心8 小时前
Flink Stream API - 源码开发需求描述
java·大数据·hadoop·flink·实时计算
Lx3529 小时前
MapReduce作业调试技巧:从本地测试到集群运行
大数据·hadoop
BYSJMG9 小时前
计算机大数据毕业设计推荐:基于Spark的气候疾病传播可视化分析系统【Hadoop、python、spark】
大数据·hadoop·python·信息可视化·spark·django·课程设计
励志成为糕手10 小时前
大数据MapReduce架构:分布式计算的经典范式
大数据·hadoop·mapreduce·分布式计算·批处理