【STM32】W25Q64 && SPI(串行外设接口)

一、SPI通信

0.IIC与SPI的优缺点

https://blog.csdn.net/weixin_44575952/article/details/124182011

1.SPI介绍

同步(有时钟线),高速,全双工(数据发送和数据接收各占一条线)

1)SCK:时钟线-->SCLK,CLK,CK--->等价于IIC的SCK

2)MOSI(主机输出从机接收),MISO(主机接收从机输出):DO(Data Output),DI(Data Input)--->等价于IIC的SDA

3)SS(片选):NSS(Not Slave Select)-->低电平有效,CS(Chip Select)-->专门进行主机和该指定从机的通信线路(可能不只一条)

4)SPI只接受:一主多从

5)SPI没有应答数据

DO,DI的区别

先确定芯片的身份(主机/从机)

2.硬件电路

1)SCK是主机控制,SCK是主机输出,SCK是从机接收

2)MOSI(主机输出从机接收)

3)MISO(主机接收从机输出)

4)SS:从机选择线(低电平有效)

3.移位示意图

SPI的数据收发:基于字节交换

如果单纯想要接收或者发送------则将接收或者发送的数据自动屏蔽掉即可

只发送,只接收,既发送既接收

4.SPI时序基本单元

SPI发起指令操作的时候传输的数据单元是=指令码+寄存器地址+操作数

1.起始条件

SS低电平有效,通信时间段内一直保持低电平

起始条件:SS从高电平切换到低电平

2.终止条件

终止条件:SS从低电平切换到高电平

3.交换一个字节(模式1)

模式1:第一个边沿放数据,也可以描述成高电平放数据,第二个边沿采集数据,也可以描述成低电平采集数据(采集数据时数据不能更改)

下降沿采样 (将数据读入寄存器中)

4.交换一个字节(模式3)

与模式1的区别:SCK极性取反(CPOL=1)

5.交换一个字节(模式0)

相比于模式1,数据输出快了半个时钟

上升沿采样(将数据读入寄存器中)

6.交换一个字节(模式2)

与模式0的区别:SCK极性取反(CPOL=1)

7.注意点:

1)CPOL:用于设置极性(1表示高电平有效,0表示低电平有效)

2)CPHA:不是用于决定上升沿读取还是下降沿读取,而是决定第几个周期进行采样。

3)一般如果我们想要接收数据&读取数据,则我们可以随便写入&读出一个值即可,其他不用理会。(我们一般发送0xff或者0x00)

5.SPI时序

1.发送指令

使用模式0(在时序开始前存放数据,在上升沿读取数据)

发送0x06(芯片公司自己定义)--->W25Q64是写使能

接收到0xff不需要看(因为我们目的是主机发送给从机,所以从机传输的数据是什么无所谓)

2.指定地址写

1)向SS指定的设备,发送写指令(0x02),

2)随后在指定地址(Address[23:0])下,写入指定数据(Data)

由此图可知要在地址为:0x123456下写入0x55这个数据

3.指定地址读

1)向SS指定的设备,发送读指令(0x03),

2)随后在指定地址(Address[23:0])下,读取从机数据(Data)

二、单片机中用到的存储器

1.物理层存储器

1)磁存储原理:磁带,软盘,机械硬盘(磁盘)

2)光刻存储:DVD

3)半导体存储:EEPROM,NandFlash,NorFlash

2.Nand和Nor的差异

(1)Nand容量大,价格低,需要按块访问(不能按字节访问),需要专用时序接口访问 (不能直接接到地址总线上)

(2)Nor容量小,价格高,按块擦和写、按字节读需要专用时序接口访问

不同点

相同点

3.单片机系统常用存储解决方案

(1)单片机自身代码:存储在内部Flash中,本质是NorFlash

(2)存少量掉电不丢失数据,用EEPROM(一般都是比较小)--》IIC通信(速度较慢),典型24C02

(2)存中容量掉电不丢失数据,用SPINorFlash(使用SPI是为了减少引脚)****--》SPI通信(速度比IIC快),一般64k-32MB范围

(3)存大容量掉电不丢失数据,用SPINandFlash,一般32MB-1GB范围

(4)要便于插拔和扩展 ,用TF/SD卡,U盘等,一般容量在GB级别。

(5)现在还有新型的SDNand,就是芯片封装的SD卡,容量在nMB-1GB级别。

(6)更大容量板载存储,用eMMC芯片,一般容量4GB-256GB级别

(7)STM32内部Flash可以开放给程序用,存储少量掉电不丢失数据。

4、存储器总结

(1)多种可用,根据产品特点和需求选择,重点考虑:性价比、容量、寿命、速度、可靠性 等因素,大多数行业都有选型惯例。

(2)程序员不必过多关心内部存储颗粒特性,更多关心编程接口即可

三、W25Q64

1.W25Q64简介

开发板中的 FLASH 芯片型号:W25Q64。W25Q 系列为台湾华邦公司推出的是一种使用 SPI 通讯协议的 NOR FLASH 存储器。芯片型号后两位表示芯片容量,例如 W25Q64 的 64 就是指 64Mbit 也就是 8M 的容量。它的 CS/CLK/DIO/DO 引脚分别连接到了 STM32 对应的 SPI 引脚 NSS/SCK/MOSI/MISO 上,其中 STM32 的 NSS 引脚虽然是其片上 SPI 外设的硬件引脚,但实际上后面的程序只是把它当成一个普通的 GPIO,使用软件的方式控制 NSS 信号,所以在 SPI 的硬件设计中,NSS 可以随便选择普通的 GPIO,不必纠结于选择硬件 NSS 信号。

FLASH 芯片中还有 WP 和 HOLD 引脚。WP 引脚可控制写保护功能,当该引脚为低电平时,禁止写入数据。我们直接接电源,不使用写保护功能。HOLD 引脚可用于暂停通讯,该引脚为低电平时,通讯暂停,数据输出引脚输出高阻抗状态,时钟和数据输入引脚无效。我们直接接电源,不使用通讯暂停功能。

1)AT24C存储容量是KB级别的,W25Q64是MB级别

2)存储容量:24位地址

2.硬件电路

3、W25Q64框图

1)W25Q64使用的存储空间是8MB(128*64=8,192bit--->8,192/1024=8MByte****)(实际上可以使用16MB)-->所以地址从:0x00 00 00到0x7f ff ff

2)存储空间的划分:先划分为若干块,在划分为若干扇区,最后划分为若干页

1.分为Block

将8MB/128Block分为64KB(每一个大小为64KB,0-127)

2.分为Sector

将64KB/16分为4KB

3.分为page

将4K/25bit分为16bit

4.其他部分

SPI控制器,状态寄存器,数据缓存区

5.Flash操作的注意事项

1)如果我们没有对Flash进行擦除,则原来是(0xAA:1010 1010)如果想要修改为(0x55:0101 0101)--->实际上无法修改【因为数据位只能由1-->0,无法从0-->1

2)如果不进行擦除,则【读出数据=原始数据&写入数据】

3)因为要擦除(将全部数据位置为1),所以我们如果读写Flash输出为0xff,则表示该位置被擦除后未被重写过

4)擦除的最小单位:扇区(4096字节)为单位

5)一个写入时序,最多只能写一页的数据(不能跨页),页就是256字节【因为页缓冲区只有256字节】,超出部分会覆盖前面的位置部分

6)写入操作后,芯片会处于忙状态,因为要将缓冲区中的数据写入Flash中【所以我们在执行写操作的代码后,要检测芯片是否处于忙状态】

7)在要进行读操作之前也要先判断芯片是否处于忙状态

8)写入不能跨页,但是读取可以跨页

9)SPIFlash读写的最小单位是1个字节,而且地址不必对齐

四、SPIFlash(W25Q64)数据手册解读

https://www.aiema.cn/part/datasheet/w25q64dwzpig-fn195394276

1、主要SPIFlash厂家

(1)SPIFlash本质:SPI接口芯片+内部存储颗粒(Nand,Nor)

(2)台湾:Winbond华邦(W开头)、MXIC旺宏(M开头)

(3)国内:GD兆易创新(GD开头)

2.数据手册查看

1.标准SPI指令

2.状态寄存器

1)写入数据后,不需要我们手动将写失能【会自动失能】

2)一个写使能,只能保证后续一条写指令可以操作

BUSY 是状态寄存器 (S0) 中的只读位,当器件正在执行命令时,该位设置为 1 状态

页编程、四页编程、扇区擦除、块擦除、芯片擦除、写入状态寄存器或

擦除/编程安全寄存器指令。 在此期间设备将忽略进一步的指令

除了读取状态寄存器和擦除/编程暂停指令(参见 tW、tPP、tSE、tBE 和

交流特性中的 tCE)。 当编程、擦除或写入状态/安全寄存器指令有

完成后,BUSY 位将被清除为 0 状态,指示设备已准备好接受进一步的指令。

写使能锁存器 (WEL) 是状态寄存器 (S1) 中的一个只读位,在执行

写使能指令。 当器件写禁止时,WEL 状态位清零。 一个写

上电时或执行以下任何指令后会出现禁用状态:写入禁用、页面

编程、四页编程、扇区擦除、块擦除、芯片擦除、写状态寄存器、擦除

安全寄存器和程序安全寄存器。

3.指令表

五、软件SPI读写

1.硬件接线

2.SPI代码编写

cpp 复制代码
#include "stm32f10x.h"                  // Device header
 
void MySPI_W_CS(uint8_t BitValue)
{
	GPIO_WriteBit(GPIOA,GPIO_Pin_4,(BitAction)BitValue);
}
void MySPI_W_CLK(uint8_t BitValue)
{
	GPIO_WriteBit(GPIOA,GPIO_Pin_5,(BitAction)BitValue);
}
void MySPI_W_MOSI(uint8_t BitValue)
{
	GPIO_WriteBit(GPIOA,GPIO_Pin_7,(BitAction)BitValue);
}
uint8_t MySPI_R_MISO(void)
{
	return GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_6);
}
 
void MySPI_Init(void)
{
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);
	
	GPIO_InitTypeDef GPIO_Init_Structure;
	//要求配置为推挽输出,浮空或上拉输入
	GPIO_Init_Structure.GPIO_Mode=GPIO_Mode_IPU;
	GPIO_Init_Structure.GPIO_Pin=GPIO_Pin_6;
	GPIO_Init_Structure.GPIO_Speed=GPIO_Speed_50MHz;
	GPIO_Init(GPIOA,&GPIO_Init_Structure);
	
	GPIO_Init_Structure.GPIO_Mode=GPIO_Mode_Out_PP;
	GPIO_Init_Structure.GPIO_Pin=GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_7;
	GPIO_Init_Structure.GPIO_Speed=GPIO_Speed_50MHz;
	GPIO_Init(GPIOA,&GPIO_Init_Structure);
 
	MySPI_W_CS(1);
	MySPI_W_CLK(0);
}
//三个基本时序:起始,交换数据,终止
void MySPI_Start(void)
{
	MySPI_W_CS(0);
}
void MySPI_Stop(void)
{
	MySPI_W_CS(1);
}
//通过掩码,依次挑出每一位操作,优点是保留了原数据的值
uint8_t MySPI_SwapByte(uint8_t ByteSend)
{
	uint8_t i,ByteReceive = 0x00;
	for(i = 0;i < 8;i ++)
	{
		MySPI_W_MOSI(ByteSend &(0x80>>i));
		MySPI_W_CLK(1);
		if(MySPI_R_MISO() == 1){ByteReceive |= (0x80 >> i);}
		MySPI_W_CLK(0);
	}
	return ByteReceive;
}
 
//还可以按照移位示意图中的方式交换数据,优点是效率高,但不能保存原数据值
//uint8_t MySPI_SwapByte(uint8_t ByteSend)
//{
//	 uint8_t i;
//   for(i=0;i<8;i ++)
//    {
//    	MySPI_W_MOSI(ByteSend &0x80);
//		ByteSend <<=1;			//最高位移出,最后补0
//    	MySPI_W_CLK(1);
//    	if(MySPI_R_MISO() == 1) {ByteSend |= 0x01;}	 //输入的数据放在最低位
//    	MySPI_W_CLK(0);
//    }
//    return ByteSend;
//}

0.电平翻转函数封装

因为W25Q64的频率很快,所以中间不需要添加延时函数

1.初始化

2.起始信号

3.终止信号

4.交换(发送/接收)一个字节(模式0)

主机发送数据给从机,从机发送数据给主机

1)SS设置为下降沿

2)将数据读入到引脚

3)SCK设置为上升沿

4)将数据从引脚读出

5)将SCK设置为下降沿

5.交换(发送/接收)一个字节(模式1)

3.W25Q64代码

cpp 复制代码
#include "stm32f10x.h"                  // Device header
#include "MySPI.H"
#include "W25Q64_INS.H"
 
void W25Q64_Init(void)
{
	MySPI_Init();
}
//用指针的方式来获取多个函数的值!!!
void W25Q64_ReadID(uint8_t *MID,uint16_t *DID)
{
	MySPI_Start();
	MySPI_SwapByte(W25Q64_JEDEC_ID);
	*MID = MySPI_SwapByte(W25Q64_DUMMY_BYTE);
	*DID = MySPI_SwapByte(W25Q64_DUMMY_BYTE);
	*DID <<= 8;
	*DID |= MySPI_SwapByte(W25Q64_DUMMY_BYTE);
	MySPI_Stop();
}
void W25Q64_WiteEnable(void)
{
	MySPI_Start();
	MySPI_SwapByte(W25Q64_WRITE_ENABLE);
	MySPI_Stop();
}
/**
  * @brief 直到BUSY清零后结束
  * @param  
  * @retval 
  */
void W25Q64_WaitBusy(void)
{
	uint32_t Timeout=100000;  //为了防止卡死
	MySPI_Start();
	MySPI_SwapByte(W25Q64_READ_STATUS_REGISTER_1);
	
	//直到busy不为1
	while((MySPI_SwapByte(0xFF) & 0X01) == 0X01)
	{
		Timeout--;
		if(Timeout == 0)
		{
			break;
		}
	}
	MySPI_Stop();
}
 
//页编程写入,注意页编程写入一页的范围
void W25Q64_PageProgram(uint32_t Address,uint8_t *DataArray,uint16_t count)	
{
	//没有24位,通过数组可以传多个字节。所以用32位,写入数据的数量范围0-256,所以用uint16不用uint8
	W25Q64_WiteEnable();
	
	uint16_t i;
	MySPI_Start();
	MySPI_SwapByte(W25Q64_PAGE_PROGRAM);
	MySPI_SwapByte(Address >> 16);
	MySPI_SwapByte(Address >> 8);	//高两位会丢弃
	MySPI_SwapByte(Address);
	for(i=0;i < count ;i++)
	{
		MySPI_SwapByte(DataArray[i]);
	}
	MySPI_Stop();
	
	W25Q64_WaitBusy();
}
 
void W25Q64_SectorErase(uint32_t Address)	
{
	//写使能仅对之后跟随的一条时序有效,结束之后会失能,所以每个函数加入这个就不用再写失能
	W25Q64_WiteEnable();
	
	MySPI_Start();
	MySPI_SwapByte(W25Q64_SECTOR_ERASE_4KB);
	MySPI_SwapByte(Address >> 16);
	MySPI_SwapByte(Address >> 8);	
	MySPI_SwapByte(Address);
	MySPI_Stop();
 
	W25Q64_WaitBusy();
}
 
void W25Q64_ReadData(uint32_t Address,uint8_t *DataArray,uint32_t count)	//改为32位
{	
	uint32_t i;
	MySPI_Start();
	MySPI_SwapByte(W25Q64_READ_DATA);
	MySPI_SwapByte(Address >> 16);
	MySPI_SwapByte(Address >> 8);	
	MySPI_SwapByte(Address);
	for(i=0;i < count ;i++)
	{
		//调用交换读取之后,内部指针自动自增
		DataArray[i]=MySPI_SwapByte(W25Q64_DUMMY_BYTE);
	}
	MySPI_Stop();
}

0.初始化

1.获取ID

实际上是【抛砖引玉】

2.宏定义

3.写使能

4.读状态寄存器1

判断当前芯片是否处于忙状态

5.Page Program

这里我们传入数据为uint16_t,不能写uint8_t,因为int8最大是255,而我们page最大256,所以如果使用int8空间不足够
如果发送到设备的字节超过256个,寻址将封装到页的开头,并覆盖以前发送的数据。

DataArray:写入的数值

写入操作前,必须先进行写使能

6.Sector Erase (4KB)

写入操作前,必须先进行写使能

7.Read Data

DataArray:返回读取到的数值

4.测试代码

cpp 复制代码
#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "LED.H"
#include "Key.h"
#include "OLED.H"
#include "W25Q64.H"
 
uint8_t MID;
uint16_t DID;
 
uint8_t ArrayWrite[]={0x55,0x66,0x77,0x88};
uint8_t ArrayRead[4];
int main(void)
{
	OLED_Init();
	W25Q64_Init();
	OLED_ShowString(1,1,"MID:   DID:");
	OLED_ShowString(2,1,"W:");
	OLED_ShowString(3,1,"R:");
 
	W25Q64_ReadID(&MID,&DID);
	OLED_ShowHexNum(1,5,MID,2);
	OLED_ShowHexNum(1,12,DID,4);
	
	//只擦除不写入,可以验证flash擦除之后变为ff
	//不擦除直接改写,可以测试不能由0到1,只能1到0
 
    //写之前先擦除。xxx000-xxffff
	W25Q64_SectorErase(0x000000); 	
	
	//页地址范围xxxx00-xxxxff
	W25Q64_PageProgram(0X000000,ArrayWrite,4); 
	
	W25Q64_ReadData(0X000000,ArrayRead,4);
	
	OLED_ShowHexNum(2,3,ArrayWrite[0],2);
	OLED_ShowHexNum(2,6,ArrayWrite[1],2);
	OLED_ShowHexNum(2,9,ArrayWrite[2],2);
	OLED_ShowHexNum(2,12,ArrayWrite[3],2);
	
	OLED_ShowHexNum(3,3,ArrayRead[0],2);
	OLED_ShowHexNum(3,6,ArrayRead[1],2);
	OLED_ShowHexNum(3,9,ArrayRead[2],2);
	OLED_ShowHexNum(3,12,ArrayRead[3],2);
 
	while(1)
	{
 
	}
}

5.事前等待 VS 事后等待

1.事前等待

表示我们在编写一个函数之前,先判断此时芯片是否处于忙状态。但是需要每一个函数前都进行判断(读寄存器&&写寄存器都要进行判断)

2.事后等待

表示我们在写完一个执行写操作的函数后,在程序退出之前查看芯片是否处于忙状态。此时如果处于忙状态则我们可以停下来等待,如果不处于忙状态则直接退出。不用每一个函数中都调用。

3.小总结

事前等待:1、写入前先等待,等不忙了再写入 2、效率高。 3、在写入和读取操作之前都要等待。

事后等待:1、写入后立刻等待,不忙了退出。 2、这样最保险,函数结束后,函数之外的地方芯片肯定不忙。 3、只需在写入后等待。

六、W25Q64的HAL源代码解析

1、 CubeMX例程展示

【精选】STM32CubeMX学习笔记(10)------SPI接口使用(读写SPI Flash W25Q64)_stm32cubemx配置spi-CSDN博客

1.时钟设置

2.SPI设置

1)在 Connectivity 中选择 SPI1 设置,并选择 Full-Duplex Master 全双工主模式不开启 NSS 即不使用硬件片选信号

SPI 为默认设置不作修改。只需注意一下,Prescaler 分频系数最低为 4,波特率 (Baud Rate) 为 18.0 MBits/s。这里被限制了,SPI1 最高通信速率可达 36Mbtis/s。

  • Clock Polarity(CPOL):SPI 通讯设备处于空闲状态时,SCK 信号线的电平信号(即 SPI 通讯开始前、 NSS 线为高电平时 SCK 的状态)。CPOL=0 时, SCK 在空闲状态时为低电平,CPOL=1 时,则相反。
  • Clock Phase(CPHA):指数据的采样的时刻,当 CPHA=0 时,MOSI 或 MISO 数据线上的信号将会在 SCK 时钟线的"奇数边沿"被采样。当 CPHA=1 时,数据线在 SCK 的"偶数边沿"采样。

3.设置SS(CS:片选)

原理图中虽然将 CS 片选接到了硬件 SPI1 的 NSS 引脚,因为硬件 NSS 使用比较麻烦,所以后面直接把 PA4 配置为普通 GPIO,手动控制片选信号。

在右边图中找到 SPI1 NSS 对应引脚,选择 GPIO_Output。

修改输出高电平 High【因为SS是低电平有效,所以初始化为高电平】

2.MDK例程分析

3.HAL库中SPI库函数分析

4.SPIFlash驱动分析

https://www.cnblogs.com/wenhao-Web/p/13827313.html

STM32F405+CubeMX HAL库读写W25Q64 SPI Flash例程_hal库spi例程-CSDN博客

W25Q64写可跨页数据

1)SPIFlash允许跨页读,不允许跨页写

2)SPIFlash写的时候,单次写是不能跨页的

cpp 复制代码
#include "main.h"
#include "stm32f4xx_hal.h"

SPI_HandleTypeDef hspi1;

#define CS_PIN GPIO_PIN_4
#define CS_PORT GPIOA

#define PAGE_SIZE 256  // 假设一页的大小为256字节

void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);

void W25Q64_WriteData(uint8_t* dataBuffer, uint32_t address, uint32_t dataSize);

int main(void)
{
  HAL_Init();
  SystemClock_Config();
  MX_GPIO_Init();
  MX_SPI1_Init();

  // 允许片选引脚
  HAL_GPIO_WritePin(CS_PORT, CS_PIN, GPIO_PIN_RESET);

  // 写入数据的缓冲区
  uint8_t dataBuffer[512];  // 假设写入512字节的数据

  // 从地址0开始写入数据
  W25Q64_WriteData(dataBuffer, 0, sizeof(dataBuffer));

  // 关闭片选引脚
  HAL_GPIO_WritePin(CS_PORT, CS_PIN, GPIO_PIN_SET);

  while (1)
  {
    // Your application code here
  }
}

// 写入数据的函数
void W25Q64_WriteData(uint8_t* dataBuffer, uint32_t address, uint32_t dataSize)
{
  uint32_t currentPage, remainingBytes;

  // 计算当前页和剩余字节数
  currentPage = address / PAGE_SIZE;
  remainingBytes = dataSize;

  // 写入整页数据
  while (remainingBytes >= PAGE_SIZE) {
    // 发送写使能命令
    uint8_t writeEnableCommand = 0x06;
    HAL_SPI_Transmit(&hspi1, &writeEnableCommand, 1, HAL_MAX_DELAY);

    // 发送写命令和地址
    uint8_t writeCommand[] = {0x02, (uint8_t)((address >> 16) & 0xFF), (uint8_t)((address >> 8) & 0xFF), (uint8_t)(address & 0xFF)};
    HAL_SPI_Transmit(&hspi1, writeCommand, sizeof(writeCommand), HAL_MAX_DELAY);

    // 发送数据
    HAL_SPI_Transmit(&hspi1, dataBuffer, PAGE_SIZE, HAL_MAX_DELAY);

    // 等待写入完成
    while (W25Q64_IsWriteInProgress()) {
      HAL_Delay(1);
    }

    // 更新地址和剩余字节数
    address += PAGE_SIZE;
    dataBuffer += PAGE_SIZE;
    remainingBytes -= PAGE_SIZE;
  }

  // 写入剩余字节
  if (remainingBytes > 0) {
    // 发送写使能命令
    uint8_t writeEnableCommand = 0x06;
    HAL_SPI_Transmit(&hspi1, &writeEnableCommand, 1, HAL_MAX_DELAY);

    // 发送写命令和地址
    uint8_t writeCommand[] = {0x02, (uint8_t)((address >> 16) & 0xFF), (uint8_t)((address >> 8) & 0xFF), (uint8_t)(address & 0xFF)};
    HAL_SPI_Transmit(&hspi1, writeCommand, sizeof(writeCommand), HAL_MAX_DELAY);

    // 发送剩余数据
    HAL_SPI_Transmit(&hspi1, dataBuffer, remainingBytes, HAL_MAX_DELAY);

    // 等待写入完成
    while (W25Q64_IsWriteInProgress()) {
      HAL_Delay(1);
    }
  }
}

// 检查写入是否仍在进行中
int W25Q64_IsWriteInProgress(void)
{
  uint8_t statusReg;

  // 发送读取状态寄存器命令
  uint8_t readStatusCommand = 0x05;
  HAL_SPI_Transmit(&hspi1, &readStatusCommand, 1, HAL_MAX_DELAY);

  // 读取状态寄存器
  HAL_SPI_Receive(&hspi1, &statusReg, 1, HAL_MAX_DELAY);

  // 检查忙位 (Bit 0)
  return (statusReg & 0x01);
}

void HAL_SPI_MspInit(SPI_HandleTypeDef* hspi)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
  
  if (hspi->Instance == SPI1)
  {
    __HAL_RCC_SPI1_CLK_ENABLE();

    __HAL_RCC_GPIOA_CLK_ENABLE();
    /**SPI1 GPIO Configuration    
    PA5     ------> SPI1_SCK
    PA6     ------> SPI1_MISO
    PA7     ------> SPI1_MOSI 
    */
    GPIO_InitStruct.Pin = GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7;
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
    GPIO_InitStruct.Alternate = GPIO_AF5_SPI1;
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  }
}

首先计算当前页和剩余字节数,然后循环写入整页数据。在每个循环中,它发送写使能命令,写命令和地址,然后发送数据。在每次写入后,它等待写入完成,然后更新地址和剩余字节数。最后,如果有剩余字节,它再次发送写使能命令,写命令和地址,并发送剩余的数据。函数 W25Q64_IsWriteInProgress 用于检查写入是否仍在进行中。

W25Q64读可跨页数据

cpp 复制代码
#include "main.h"
#include "stm32f4xx_hal.h"

SPI_HandleTypeDef hspi1;

#define CS_PIN GPIO_PIN_4
#define CS_PORT GPIOA

#define PAGE_SIZE 256  // 假设一页的大小为256字节

void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);

void W25Q64_ReadData(uint8_t* dataBuffer, uint32_t address, uint32_t dataSize);

int main(void)
{
  HAL_Init();
  SystemClock_Config();
  MX_GPIO_Init();
  MX_SPI1_Init();

  // 允许片选引脚
  HAL_GPIO_WritePin(CS_PORT, CS_PIN, GPIO_PIN_RESET);

  // 读取数据的缓冲区
  uint8_t dataBuffer[512];  // 假设读取512字节的数据

  // 从地址0开始读取数据
  W25Q64_ReadData(dataBuffer, 0, sizeof(dataBuffer));

  // 关闭片选引脚
  HAL_GPIO_WritePin(CS_PORT, CS_PIN, GPIO_PIN_SET);

  while (1)
  {
    // Your application code here
  }
}

// 读取数据的函数
void W25Q64_ReadData(uint8_t* dataBuffer, uint32_t address, uint32_t dataSize)
{
  uint32_t currentPage, remainingBytes;

  // 计算当前页和剩余字节数
  currentPage = address / PAGE_SIZE;
  remainingBytes = dataSize;

  // 读取整页数据
  while (remainingBytes >= PAGE_SIZE) {
    // 发送读命令和地址
    uint8_t readCommand[] = {0x03, (uint8_t)((address >> 16) & 0xFF), (uint8_t)((address >> 8) & 0xFF), (uint8_t)(address & 0xFF)};
    HAL_SPI_Transmit(&hspi1, readCommand, sizeof(readCommand), HAL_MAX_DELAY);

    // 接收数据
    HAL_SPI_Receive(&hspi1, dataBuffer, PAGE_SIZE, HAL_MAX_DELAY);

    // 更新地址和剩余字节数
    address += PAGE_SIZE;
    dataBuffer += PAGE_SIZE;
    remainingBytes -= PAGE_SIZE;
  }

  // 读取剩余字节
  if (remainingBytes > 0) {
    // 发送读命令和地址
    uint8_t readCommand[] = {0x03, (uint8_t)((address >> 16) & 0xFF), (uint8_t)((address >> 8) & 0xFF), (uint8_t)(address & 0xFF)};
    HAL_SPI_Transmit(&hspi1, readCommand, sizeof(readCommand), HAL_MAX_DELAY);

    // 接收剩余数据
    HAL_SPI_Receive(&hspi1, dataBuffer, remainingBytes, HAL_MAX_DELAY);
  }
}

void HAL_SPI_MspInit(SPI_HandleTypeDef* hspi)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
  
  if (hspi->Instance == SPI1)
  {
    __HAL_RCC_SPI1_CLK_ENABLE();

    __HAL_RCC_GPIOA_CLK_ENABLE();
    /**SPI1 GPIO Configuration    
    PA5     ------> SPI1_SCK
    PA6     ------> SPI1_MISO
    PA7     ------> SPI1_MOSI 
    */
    GPIO_InitStruct.Pin = GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7;
    GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
    GPIO_InitStruct.Alternate = GPIO_AF5_SPI1;
    HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
  }
}

W25Q64_ReadData 函数首先计算当前页和剩余字节数,然后循环读取整页数据。在每个循环中,它发送读命令和地址,然后接收数据。在每次读取后,它更新地址和剩余字节数。最后,如果有剩余字节,它再次发送读命令和地址,并接收剩余的数据。

七、STM32内部Flash

1、内部flash信息

1.查数据手册的flash章节

STM32F10xxx闪存编程参考手册.pdf · 林何/STM32F103C8 - 码云 - 开源中国 (gitee.com)

正常原来程序的代码从前往后写。

所以正常额外添加的代码从后往前写,防止把原来的程序覆盖掉。

2.查MDK工程编译后的map文件

从Flash往后数9324后开始就跨页写入数据

3.操作函数查HAL库

未完成

相关推荐
ShiinaKaze几秒前
【MCU】微控制器的编程技术:ISP 与 IAP
单片机·嵌入式硬件·mcu·iap·isp
北京迅为11 分钟前
【北京迅为】iTOP-4412全能版使用手册-第十二章 Linux系统编程简介
linux·嵌入式硬件·4412开发板
小吴的笔记本31 分钟前
1 ISP一键下载
stm32
不能只会打代码1 小时前
51单片机从入门到精通:理论与实践指南入门篇(二)
单片机·嵌入式硬件·51单片机
Echo_cy_3 小时前
STM32 USART串口发送
单片机·嵌入式硬件
憧憬一下3 小时前
IMX 平台UART驱动情景分析:read篇--从硬件驱动到行规程的全链路剖析
arm开发·嵌入式硬件·嵌入式·linux驱动开发
cd_farsight4 小时前
单片机位数对性能会产生什么影响?!
单片机·嵌入式硬件
DS小龙哥4 小时前
基于STM32设计的智能桌面暖风机(华为云IOT)
stm32·物联网·华为云
honey ball8 小时前
LLC与反激电路设计【学习笔记】
单片机·嵌入式硬件·学习
Graceful_scenery14 小时前
STM32F103外部中断配置
stm32·单片机·嵌入式硬件