机器学习第12天:聚类

文章目录

机器学习专栏

无监督学习介绍

聚类

K-Means

使用方法

实例演示

代码解析

绘制决策边界

本章总结


机器学习专栏

机器学习_Nowl的博客-CSDN博客

无监督学习介绍

某位著名计算机科学家有句话:"如果智能是蛋糕,无监督学习将是蛋糕本体,有监督学习是蛋糕上的糖霜,强化学习是蛋糕上的樱桃"

现在的人工智能大多数应用有监督学习,但无监督学习的世界也是广阔的,因为如今大部分的数据都是没有标签的

上一篇文章讲到的降维就是一种无监督学习技术,我们将在本章介绍聚类


聚类

聚类是指发现数据集中集群的共同点,在没有人为标注的情况下将数据集区分为指定数量的类别

K-Means

K-Means是一种简单的聚类算法。能快速,高效地对数据集进行聚类


使用方法

python 复制代码
from sklearn.cluster import KMeans


model = KMeans(n_clusters=3)
model.fit(data)

这段代码导入了KMeans机器学习库,指定模型将数据划分为三类


实例演示

python 复制代码
import numpy as np
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt


# 生成一些随机数据作为示例
np.random.seed(42)
data = np.random.rand(100, 2)  # 100个数据点,每个点有两个特征

# 指定要分成的簇数(可以根据实际情况调整)
num_clusters = 3

# 使用KMeans算法进行聚类
kmeans = KMeans(n_clusters=num_clusters)
kmeans.fit(data)

# 获取每个数据点的所属簇标签
labels = kmeans.labels_

# 获取每个簇的中心点
centroids = kmeans.cluster_centers_

print(centroids)
# # 可视化结果
for i in range(num_clusters):
    cluster_points = data[labels == i]
    plt.scatter(cluster_points[:, 0], cluster_points[:, 1], label=f'Cluster {i + 1}')

# 绘制簇中心点
plt.scatter(centroids[:, 0], centroids[:, 1], marker='X', s=200, color='red', label='Centroids')

plt.scatter(centroids[0][0], centroids[0][1])

plt.title('K-means Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend(loc='upper right')
plt.show()

代码解析

  1. 导入必要的库: 导入NumPy用于生成随机数据,导入KMeans类从scikit-learn中进行K-means聚类,导入matplotlib.pyplot用于可视化。

  2. 生成随机数据: 使用NumPy生成一个包含100个数据点的二维数组,每个数据点有两个特征。

  3. 指定簇的数量:num_clusters设置为希望的簇数,这里设置为3。

  4. 应用K-means算法: 创建KMeans对象,指定簇的数量,然后使用fit方法拟合数据。模型训练完成后,每个数据点将被分配到一个簇,并且簇中心点将被计算。

  5. 获取簇标签和中心点: 使用labels_属性获取每个数据点的簇标签,使用cluster_centers_属性获取每个簇的中心点。

  6. 可视化聚类结果: 使用循环遍历每个簇,绘制簇中的数据点。然后,使用scatter函数绘制簇中心点,并为图添加标题、轴标签和图例。

  7. 显示图形: 最后,使用show方法显示可视化结果


绘制决策边界

我们使用网格坐标和predict方法生成决策边界,然后使用contour函数在图上绘制边界。

主要代码

python 复制代码
import numpy as np
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt


# 生成一些随机数据作为示例
np.random.seed(42)
data = np.random.rand(100, 2)  # 100个数据点,每个点有两个特征

# 指定要分成的簇数(可以根据实际情况调整)
num_clusters = 3

# 使用KMeans算法进行聚类
kmeans = KMeans(n_clusters=num_clusters)
kmeans.fit(data)

# 获取每个数据点的所属簇标签
labels = kmeans.labels_

# 获取每个簇的中心点
centroids = kmeans.cluster_centers_

# 可视化结果,包括决策边界
for i in range(num_clusters):
    cluster_points = data[labels == i]
    plt.scatter(cluster_points[:, 0], cluster_points[:, 1], label=f'Cluster {i + 1}')

# 绘制簇中心点
plt.scatter(centroids[:, 0], centroids[:, 1], marker='X', s=200, color='red', label='Centroids')

# 绘制决策边界
h = 0.02  # 步长
x_min, x_max = data[:, 0].min() - 1, data[:, 0].max() + 1
y_min, y_max = data[:, 1].min() - 1, data[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

plt.contour(xx, yy, Z, colors='gray', linewidths=1, alpha=0.5)  # 绘制决策边界

plt.title('K-means Clustering with Decision Boundaries')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend()
plt.show()

本章总结

  • 无监督学习的意义
  • 聚类的定义
  • K-Means方法聚类
  • 绘制K-Means决策边界

感谢阅读,觉得有用的话就订阅下本专栏吧

相关推荐
dvlinker2 分钟前
2026远程桌面安全白皮书:ToDesk/TeamViewer/向日葵核心安全性与合规性横向测评
人工智能
2的n次方_3 分钟前
CANN ascend-transformer-boost 深度解析:针对大模型的高性能融合算子库与算力优化机制
人工智能·深度学习·transformer
熊猫_豆豆4 分钟前
YOLOP车道检测
人工智能·python·算法
nimadan125 分钟前
**热门短剧小说扫榜工具2025推荐,精准捕捉爆款趋势与流量
人工智能·python
qq_12498707538 分钟前
基于JavaWeb的大学生房屋租赁系统(源码+论文+部署+安装)
java·数据库·人工智能·spring boot·计算机视觉·毕业设计·计算机毕业设计
杜子不疼.9 分钟前
CANN算子基础框架库opbase的算子开发与扩展机制深度解析
人工智能
程序猿追10 分钟前
CANN ops-math仓库解读 数学算子的底层支撑与高性能实现
人工智能·架构
结局无敌10 分钟前
统一算子语言:cann/ops-nn 如何为异构AI世界建立通用“方言”
人工智能·cann
杜子不疼.17 分钟前
CANN计算机视觉算子库ops-cv的图像处理与特征提取优化实践
图像处理·人工智能·计算机视觉
大闲在人18 分钟前
软件仍将存在,但软件公司会以全新形式出现——从Claude智能体引发万亿市值震荡看行业重构
人工智能