人工智能-注意力机制之残差连接和层规范化

残差连接和层规范化

层规范化和批量规范化的目标相同,但层规范化是基于特征维度进行规范化。尽管批量规范化在计算机视觉中被广泛应用,但在自然语言处理任务中(输入通常是变长序列)批量规范化通常不如层规范化的效果好。

以下代码对比不同维度的层规范化和批量规范化的效果。

python 复制代码
ln = nn.LayerNorm(2)
bn = nn.BatchNorm1d(2)
X = torch.tensor([[1, 2], [2, 3]], dtype=torch.float32)
# 在训练模式下计算X的均值和方差
print('layer norm:', ln(X), '\nbatch norm:', bn(X))
复制代码
layer norm: tensor([[-1.0000,  1.0000],
        [-1.0000,  1.0000]], grad_fn=<NativeLayerNormBackward0>)
batch norm: tensor([[-1.0000, -1.0000],
        [ 1.0000,  1.0000]], grad_fn=<NativeBatchNormBackward0>)

现在可以使用残差连接和层规范化来实现AddNorm类。暂退法也被作为正则化方法使用。

python 复制代码
#@save
class AddNorm(nn.Module):
    """残差连接后进行层规范化"""
    def __init__(self, normalized_shape, dropout, **kwargs):
        super(AddNorm, self).__init__(**kwargs)
        self.dropout = nn.Dropout(dropout)
        self.ln = nn.LayerNorm(normalized_shape)

    def forward(self, X, Y):
        return self.ln(self.dropout(Y) + X)

残差连接要求两个输入的形状相同,以便加法操作后输出张量的形状相同。

python 复制代码
add_norm = AddNorm([3, 4], 0.5)
add_norm.eval()
add_norm(torch.ones((2, 3, 4)), torch.ones((2, 3, 4))).shape

torch.Size([2, 3, 4])

相关推荐
xidianjiapei00111 分钟前
LLM架构解析:循环神经网络(RNN)(第三部分)—— 从基础原理到实践应用的深度探索
人工智能·rnn·深度学习·神经网络·机器学习·llm
扫地的小何尚32 分钟前
使用NVIDIA NIM微服务加速科学文献综述
开发语言·数据结构·人工智能·深度学习·微服务·云原生·架构
weixin_599073942 小时前
第P10周:Pytorch实现车牌识别
人工智能·pytorch·深度学习
沙子可可3 小时前
深入学习Pytorch:第一章-初步认知
人工智能·pytorch·深度学习·学习
JinYoMo4 小时前
【手把手教你从零开始YOLOv8-入门篇】YOLOv8 模型训练
深度学习·算法
我感觉。4 小时前
【深度学习】通过colab将本地的数据集上传到drive
人工智能·深度学习·colab·drive·数据集保存
乌旭6 小时前
量子纠错码实战:从Shor码到表面码
人工智能·深度学习·学习·机器学习·transformer·量子计算
乌旭6 小时前
量子计算入门:Qiskit实战量子门电路设计
人工智能·pytorch·python·深度学习·transformer·量子计算
hjs_deeplearning6 小时前
论文写作篇#8:双栏的格式里怎么插入横跨两栏的图片和表格
人工智能·深度学习·学习·yolo·机器学习·论文写作·论文排版
Helios@7 小时前
CNN 中感受野/权值共享是什么意思?
人工智能·深度学习·计算机视觉