人工智能-注意力机制之残差连接和层规范化

残差连接和层规范化

层规范化和批量规范化的目标相同,但层规范化是基于特征维度进行规范化。尽管批量规范化在计算机视觉中被广泛应用,但在自然语言处理任务中(输入通常是变长序列)批量规范化通常不如层规范化的效果好。

以下代码对比不同维度的层规范化和批量规范化的效果。

python 复制代码
ln = nn.LayerNorm(2)
bn = nn.BatchNorm1d(2)
X = torch.tensor([[1, 2], [2, 3]], dtype=torch.float32)
# 在训练模式下计算X的均值和方差
print('layer norm:', ln(X), '\nbatch norm:', bn(X))
复制代码
layer norm: tensor([[-1.0000,  1.0000],
        [-1.0000,  1.0000]], grad_fn=<NativeLayerNormBackward0>)
batch norm: tensor([[-1.0000, -1.0000],
        [ 1.0000,  1.0000]], grad_fn=<NativeBatchNormBackward0>)

现在可以使用残差连接和层规范化来实现AddNorm类。暂退法也被作为正则化方法使用。

python 复制代码
#@save
class AddNorm(nn.Module):
    """残差连接后进行层规范化"""
    def __init__(self, normalized_shape, dropout, **kwargs):
        super(AddNorm, self).__init__(**kwargs)
        self.dropout = nn.Dropout(dropout)
        self.ln = nn.LayerNorm(normalized_shape)

    def forward(self, X, Y):
        return self.ln(self.dropout(Y) + X)

残差连接要求两个输入的形状相同,以便加法操作后输出张量的形状相同。

python 复制代码
add_norm = AddNorm([3, 4], 0.5)
add_norm.eval()
add_norm(torch.ones((2, 3, 4)), torch.ones((2, 3, 4))).shape

torch.Size([2, 3, 4])

相关推荐
点我头像干啥27 分钟前
用 PyTorch 构建液态神经网络(LNN):下一代动态深度学习模型
pytorch·深度学习·神经网络
小白狮ww1 小时前
VASP 教程:VASP 机器学习力场微调
人工智能·深度学习·机器学习
呆头鹅AI工作室2 小时前
[2025CVPR]SEEN-DA:基于语义熵引导的领域感知注意力机制
人工智能·深度学习·机器学习
西柚小萌新2 小时前
【深度学习:进阶篇】--4.3.seq2seq与Attention机制
人工智能·深度学习
求索小沈2 小时前
ubuntu22.04 安装cuda cudnn
人工智能·深度学习
FF-Studio3 小时前
【硬核数学】3. AI如何应对不确定性?概率论为模型注入“灵魂”《从零构建机器学习、深度学习到LLM的数学认知》
大数据·人工智能·深度学习·机器学习·数学建模·自然语言处理·概率论
CoovallyAIHub4 小时前
YOLOv13都来了,目标检测还卷得动吗?别急,还有这些新方向!
深度学习·算法·计算机视觉
网安INF8 小时前
深度学习中的逻辑回归:从原理到Python实现
人工智能·python·深度学习·算法·逻辑回归
CoovallyAIHub9 小时前
RTMPose:重新定义多人姿态估计的“实时”标准!
深度学习·算法·计算机视觉
hjs_deeplearning10 小时前
认知篇#10:何为分布式与多智能体?二者联系?
人工智能·分布式·深度学习·学习·agent·智能体