C#,数值计算——有理函数插值和外推(Rational_interp)的计算方法与源程序

1 文本格式

using System;

namespace Legalsoft.Truffer

{

/// <summary>

/// 有理函数插值和外推

/// Rational Function Interpolation and Extrapolation

/// Given a value x, and using pointers to data xx and yy, this routine returns

/// an interpolated value y, and stores an error estimate dy. The returned value

/// is obtained by mm-point polynomial interpolation on the subrange

/// xx[jl..jl + mm - 1].

/// </summary>

public class Rational_interp : Base_interp

{

private double dy { get; set; }

public Rational_interp(double[] xv, double[] yv, int m) : base(xv, yv[0], m)

{

this.dy = 0.0;

}

/// <summary>

/// Given a value x, and using pointers to data xx and yy, this routine returns

/// an interpolated value y, and stores an error estimate dy. The returned

/// value is obtained by mm-point diagonal rational function interpolation on

/// the subrange xx[jl..jl + mm - 1].

/// </summary>

/// <param name="jl"></param>

/// <param name="x"></param>

/// <returns></returns>

/// <exception cref="Exception"></exception>

public override double rawinterp(int jl, double x)

{

const double TINY = 1.0e-99;

int ns = 0;

double[] c = new double[mm];

double[] d = new double[mm];

double hh = Math.Abs(x - xx[jl + 0]);

for (int i = 0; i < mm; i++)

{

double h = Math.Abs(x - xx[jl + i]);

//if (h == 0.0)

if (Math.Abs(h) <= float.Epsilon)

{

dy = 0.0;

return yy[jl + i];

}

else if (h < hh)

{

ns = i;

hh = h;

}

c[i] = yy[jl + i];

d[i] = yy[jl + i] + TINY;

}

double y = yy[jl + ns--];

for (int m = 1; m < mm; m++)

{

for (int i = 0; i < mm - m; i++)

{

double w = c[i + 1] - d[i];

double h = xx[jl + i + m] - x;

double t = (xx[jl + i] - x) * d[i] / h;

double dd = t - c[i + 1];

//if (dd == 0.0)

if (Math.Abs(dd) <= float.Epsilon)

{

throw new Exception("Error in routine ratint");

}

dd = w / dd;

d[i] = c[i + 1] * dd;

c[i] = t * dd;

}

y += (dy = (2 * (ns + 1) < (mm - m) ? c[ns + 1] : d[ns--]));

}

return y;

}

}

}

2 代码格式

cs 复制代码
using System;

namespace Legalsoft.Truffer
{
    /// <summary>
    /// 有理函数插值和外推
    /// Rational Function Interpolation and Extrapolation
    /// Given a value x, and using pointers to data xx and yy, this routine returns
    /// an interpolated value y, and stores an error estimate dy. The returned value
    /// is obtained by mm-point polynomial interpolation on the subrange
    /// xx[jl..jl + mm - 1].
    /// </summary>
    public class Rational_interp : Base_interp
    {
        private double dy { get; set; }

        public Rational_interp(double[] xv, double[] yv, int m) : base(xv, yv[0], m)
        {
            this.dy = 0.0;
        }

        /// <summary>
        /// Given a value x, and using pointers to data xx and yy, this routine returns
        /// an interpolated value y, and stores an error estimate dy. The returned
        /// value is obtained by mm-point diagonal rational function interpolation on
        /// the subrange xx[jl..jl + mm - 1].
        /// </summary>
        /// <param name="jl"></param>
        /// <param name="x"></param>
        /// <returns></returns>
        /// <exception cref="Exception"></exception>
        public override double rawinterp(int jl, double x)
        {
            const double TINY = 1.0e-99;
            int ns = 0;
            double[] c = new double[mm];
            double[] d = new double[mm];
            double hh = Math.Abs(x - xx[jl + 0]);
            for (int i = 0; i < mm; i++)
            {
                double h = Math.Abs(x - xx[jl + i]);
                //if (h == 0.0)
                if (Math.Abs(h) <= float.Epsilon)
                {
                    dy = 0.0;
                    return yy[jl + i];
                }
                else if (h < hh)
                {
                    ns = i;
                    hh = h;
                }
                c[i] = yy[jl + i];
                d[i] = yy[jl + i] + TINY;
            }
            double y = yy[jl + ns--];
            for (int m = 1; m < mm; m++)
            {
                for (int i = 0; i < mm - m; i++)
                {
                    double w = c[i + 1] - d[i];
                    double h = xx[jl + i + m] - x;
                    double t = (xx[jl + i] - x) * d[i] / h;
                    double dd = t - c[i + 1];
                    //if (dd == 0.0)
                    if (Math.Abs(dd) <= float.Epsilon)
                    {
                        throw new Exception("Error in routine ratint");
                    }
                    dd = w / dd;
                    d[i] = c[i + 1] * dd;
                    c[i] = t * dd;
                }
                y += (dy = (2 * (ns + 1) < (mm - m) ? c[ns + 1] : d[ns--]));
            }
            return y;
        }
    }
}
相关推荐
myzzb22 分钟前
基于uiautomation的自动化流程RPA开源开发演示
运维·python·学习·算法·自动化·rpa
java1234_小锋38 分钟前
一周学会Matplotlib3 Python 数据可视化-绘制自相关图
开发语言·python·信息可视化·matplotlib·matplotlib3
甄超锋40 分钟前
Java Maven更换国内源
java·开发语言·spring boot·spring·spring cloud·tomcat·maven
旺小仔.1 小时前
双指针和codetop复习
数据结构·c++·算法
凢en1 小时前
Perl——qw()函数
开发语言·perl
jingfeng5141 小时前
C++ STL-string类底层实现
前端·c++·算法
郝学胜-神的一滴1 小时前
基于C++的词法分析器:使用正则表达式的实现
开发语言·c++·程序人生·正则表达式·stl
雲墨款哥2 小时前
JS算法练习-Day10-判断单调数列
前端·javascript·算法
FPGA2 小时前
CRC校验原理及其FPGA实现
算法
Jina AI2 小时前
回归C++: 在GGUF上构建高效的向量模型
人工智能·算法·机器学习·数据挖掘·回归