机器学习算法——主成分分析(PCA)

目录

  • [1. 主体思想](#1. 主体思想)
  • [2. 算法流程](#2. 算法流程)
  • [3. 代码实践](#3. 代码实践)

1. 主体思想

主成分分析(Principal Component Analysis)常用于实现数据降维,它通过线性变换将高维数据映射到低维空间,使得映射后的数据具有最大的方差。主成分可以理解成数据集中的特征,具体来说,第一主成分是数据中方差最大的特征(即该特征下的值的方差最大),数据点在该方向有最大的扩散性(即在该方向上包含的信息量最多)。第二主成分与第一主成分正交(即与第一主成分无关),并在所有可能正交方向中,选择方差次大的方向。然后,第三主成分与前两个主成分正交,且选择在其余所有可能正交方向中有最大方差的方向,以此类推,有多少特征就有多少主成分。

  • 主成分上的方差越小,说明该特征上的取值可能都相同,那这一个特征的取值对样本而言就没有意义,因为其包含的信息量较少。
  • 主成分上的方差越大,说明该特征上的值越分散,那么它包含的信息就越多,对数据降维就越有帮助。

下图[1](#1)中,紫色线方向上数据的方差最大(该方向上点的分布最分散,包含了更多的信息量),则可以将该方向上的特征作为第一主成分。

主成分分析的优点[2](#2)

  • 数据降维:PCA能够减少数据的维度(复杂度),提高计算效率。
  • 数据可视化:通过PCA降维,可以将数据可视化到更低维度的空间中,便于数据的观察和理解。
  • 去除噪声: 主成分分析可以把数据的主要特征提取出来(数据的主要特征集中在少数几个主成分上),忽略小的、可能是噪声的特征,同时可以防止过拟合。
  • 去除冗余: 在原始数据中,很多情况下多个变量之间存在高度相关性,导致数据冗余。PCA通过新的一组正交的主成分来描述数据,可以最大程度降低原始的数据冗余。

2. 算法流程

  1. 数据预处理:中心化 x i − x ˉ x_i-\bar{x} xi−xˉ (每列的每个值都减去该列的均值)。
  2. 求样本的协方差矩阵 1 m X T X \frac{1}{m}X^TX m1XTX(m为样本数量,X为样本矩阵)。
  3. 计算协方差矩阵的特征值和对应的特征向量。
  4. 选择最大的 K K K 个特征值对应的 K K K 个特征向量构造特征矩阵。
  5. 将中心化后的数据投影到特征矩阵上。
  6. 输出投影后的数据集。

协方差矩阵的计算(二维)
C = 1 m X T X = ( C o v ( x , x ) C o v ( x , y ) C o v ( y , x ) C o v ( y , y ) ) = ( 1 m ∑ i = 1 m x i 2 1 m ∑ i = 1 m x i y i 1 m ∑ i = 1 m y i x i 1 m ∑ i = 1 m y i 2 ) C=\frac{1}{m}X^TX=\begin{pmatrix}Cov(x,x)&Cov(x,y) \\Cov(y,x)&Cov(y,y)\end{pmatrix} =\begin{pmatrix} \frac{1}{m}\sum_{i=1}^{m}x_i^2&\frac{1}{m}\sum_{i=1}^{m}x_iy_i \\ \frac{1}{m}\sum_{i=1}^{m}y_ix_i&\frac{1}{m}\sum_{i=1}^{m}y_i^2 \end{pmatrix} C=m1XTX=(Cov(x,x)Cov(y,x)Cov(x,y)Cov(y,y))=(m1∑i=1mxi2m1∑i=1myixim1∑i=1mxiyim1∑i=1myi2)

其中, x x x 和 y y y 表示不同的特征列, c o v ( x , x ) = D ( x ) = 1 m ∑ i = 1 m ( x i − x ˉ ) 2 cov(x,x)=D(x)=\frac{1}{m}\sum_{i=1}^{m}(x_i-\bar{x})^2 cov(x,x)=D(x)=m1∑i=1m(xi−xˉ)2(协方差矩阵中的 x i x_i xi 表示已经中心化后的值),协方差矩阵是一个对称的矩阵,且对角线元素是各个特征(一列即为一个特征)的方差。

协方差矩阵的计算(三维)
C = ( C o v ( x , x ) C o v ( x , y ) C o v ( x , z ) C o v ( y , x ) C o v ( y , y ) C o v ( y , z ) C o v ( z , x ) C o v ( z , y ) C o v ( z , z ) ) C=\begin{pmatrix} Cov(x,x)&Cov(x,y)&Cov(x,z) \\ Cov(y,x)&Cov(y,y)&Cov(y,z) \\ Cov(z,x)&Cov(z,y)&Cov(z,z) \end{pmatrix} C= Cov(x,x)Cov(y,x)Cov(z,x)Cov(x,y)Cov(y,y)Cov(z,y)Cov(x,z)Cov(y,z)Cov(z,z)


举例说明

下面共5个样本,每个样本两个特征,第一列的均值为2.2,第二列的均值为3.8。

  1. 数据中心化(每列的每个值都减去该列的均值)

  2. 计算协方差矩阵
    C = [ 1.7 1.05 1.05 5.7 ] C=\begin{bmatrix} 1.7&1.05 \\ 1.05&5.7 \end{bmatrix} C=[1.71.051.055.7]

  3. 计算特征值与特征向量
    e i g e n v a l u e s = [ 1.4411286 , 5.9588714 ] eigenvalues=[1.4411286,5.9588714] eigenvalues=[1.4411286,5.9588714]
    e i g e n v e c t o r s = [ − 0.97092685 − 0.23937637 0.23937637 − 0.97092685 ] eigenvectors=\begin{bmatrix} -0.97092685&-0.23937637\\ 0.23937637&-0.97092685 \end{bmatrix} eigenvectors=[−0.970926850.23937637−0.23937637−0.97092685]

  4. 选择最大的一个特征值(将数据降为一维)5.9588714,对应的特征向量为

    − 0.23937637 − 0.97092685 \] \\begin{bmatrix} -0.23937637\\\\ -0.97092685 \\end{bmatrix} \[−0.23937637−0.97092685

  5. 将中心化后的数据投影到特征矩阵

    − 1.2 − 1.8 − 0.2 0.2 − 1.2 1.2 0.8 − 2.8 1.8 3.2 \] ∗ \[ − 0.23937637 − 0.97092685 \] = \[ 2.03491998 − 0.1463101 − 0.87786057 2.52709409 − 3.5378434 \] \\begin{bmatrix} -1.2\&-1.8 \\\\ -0.2\&0.2 \\\\ -1.2\&1.2 \\\\ 0.8\&-2.8 \\\\ 1.8\&3.2 \\end{bmatrix}\*\\begin{bmatrix} -0.23937637\\\\ -0.97092685 \\end{bmatrix}=\\begin{bmatrix} 2.03491998\\\\ -0.1463101\\\\ -0.87786057\\\\ 2.52709409\\\\ -3.5378434 \\end{bmatrix} −1.2−0.2−1.20.81.8−1.80.21.2−2.83.2 ∗\[−0.23937637−0.97092685\]= 2.03491998−0.1463101−0.877860572.52709409−3.5378434 \[ 2.03491998 − 0.1463101 − 0.87786057 2.52709409 − 3.5378434 \] \\begin{bmatrix} 2.03491998\\\\ -0.1463101\\\\ -0.87786057\\\\ 2.52709409\\\\ -3.5378434 \\end{bmatrix} 2.03491998−0.1463101−0.877860572.52709409−3.5378434 即为降维后的数据。

python 复制代码
from sklearn.neural_network import MLPClassifier
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report,confusion_matrix
import numpy as np
import matplotlib.pyplot as plt

# 载入手写体数据集并切分为训练集和测试集
digits = load_digits()
x_data = digits.data 
y_data = digits.target 
x_train, x_test, y_train, y_test = train_test_split(x_data,y_data)
x_data.shape 

运行结果

python 复制代码
(1797, 64)
python 复制代码
# 创建神经网络模型,包含两个隐藏层,每个隐藏层的神经元数量分别为
# 100和50,最大迭代次数为500
mlp = MLPClassifier(hidden_layer_sizes=(100,50) ,max_iter=500)
mlp.fit(x_train,y_train)
python 复制代码
# 数据中心化
def zeroMean(dataMat):
    # 按列求平均,即各个特征的平均
    meanVal = np.mean(dataMat, axis=0) 
    newData = dataMat - meanVal
    return newData, meanVal

# PCA降维,top表示要将数据降维到几维
def pca(dataMat,top):
    # 数据中心化
    newData,meanVal=zeroMean(dataMat) 
    # np.cov用于求协方差矩阵,参数rowvar=0说明数据一行代表一个样本
    covMat = np.cov(newData, rowvar=0)
    # np.linalg.eig求矩阵的特征值和特征向量
    eigVals, eigVects = np.linalg.eig(np.mat(covMat))
    # 对特征值从小到大排序
    eigValIndice = np.argsort(eigVals)
    # 从eigValIndice中提取倒数top个索引,并按照从大到小的顺序返回一个切片列表
    # 后一个 -1 表示切片的方向为从后往前,以负的步长(-1)进行迭代
    n_eigValIndice = eigValIndice[-1:-(top+1):-1]
    # 最大的n个特征值对应的特征向量
    n_eigVect = eigVects[:,n_eigValIndice]
    # 低维特征空间的数据
    lowDDataMat = newData*n_eigVect
    # 利用低纬度数据来重构数据
    reconMat = (lowDDataMat*n_eigVect.T) + meanVal
    # 返回低维特征空间的数据和重构的矩阵
    return lowDDataMat,reconMat 
python 复制代码
# 绘制降维后的数据及分类结果,共10个类
lowDDataMat, reconMat = pca(x_data, 2)
predictions = mlp.predict(x_data)
x = np.array(lowDDataMat)[:,0]
y = np.array(lowDDataMat)[:,1]
plt.scatter(x,y,c=y_data)
python 复制代码
# 将数据降为3维
lowDDataMat, reconMat = pca(x_data,3)
# 绘制三维数据及分类结果,共10个类
x = np.array(lowDDataMat)[:,0]
y = np.array(lowDDataMat)[:,1]
z = np.array(lowDDataMat)[:,2]
ax = plt.figure().add_subplot(111, projection = '3d') 
ax.scatter(x, y, z, c = y_data, s = 10) #点为红色三角形 

  1. 主成分分析(PCA) ↩︎

  2. 主成分分析(PCA)理解 ↩︎

相关推荐
综合热讯1 分钟前
脑机接口赋能 认知障碍诊疗迈入精准时代
人工智能·机器学习·数据挖掘
guygg888 分钟前
基于捷联惯导与多普勒计程仪组合导航的MATLAB算法实现
开发语言·算法·matlab
fengfuyao9859 分钟前
遗传算法与粒子群算法求解非线性函数最大值问题
算法
LeetCode天天刷23 分钟前
【软件认证】比特翻转【滑动窗口】
算法
源代码•宸26 分钟前
Leetcode—1123. 最深叶节点的最近公共祖先【中等】
经验分享·算法·leetcode·职场和发展·golang·dfs
s砚山s29 分钟前
代码随想录刷题——二叉树篇(十三)
数据结构·算法
alphaTao33 分钟前
LeetCode 每日一题 2026/1/5-2026/1/11
算法·leetcode
山上三树34 分钟前
详细介绍 C 语言中的 #define 宏定义
c语言·开发语言·算法
AI科技星1 小时前
引力与电磁的动力学耦合:变化磁场产生引力场与电场方程的第一性原理推导、验证与统一性意义
服务器·人工智能·科技·线性代数·算法·机器学习·生活
蜕变菜鸟1 小时前
JS的Object.keys()和sort()排序的用法
数据结构·算法