大数据学习(24)-spark on hive和hive on spark的区别

&&大数据学习&&

🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门

💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞


1)Spark on Hive

Spark on Hive 是Hive只作为存储角色,Spark负责sql解析优化,执行。这里可以理解为Spark 通过Spark SQL 使用Hive 语句操作Hive表 ,底层运行的还是 Spark RDD。具体步骤如下:

通过SparkSQL,加载Hive的配置文件,获取到Hive的元数据信息;

获取到Hive的元数据信息之后可以拿到Hive表的数据;

通过SparkSQL来操作Hive表中的数据。

2)Hive on Spark

Hive on Spark是Hive既作为存储又负责sql的解析优化,Spark负责执行。这里Hive的执行引擎变成了Spark,不再是MR,这个要实现比Spark on Hive麻烦很多, 必须重新编译你的spark和导入jar包,不过目前大部分使用的确实是spark on hive。

Hive默认使用MapReduce作为执行引擎,即Hive on MapReduce。实际上,Hive还可以使用Tez和Spark作为其执行引擎,分别为Hive on Tez和Hive on Spark。由于MapReduce中间计算均需要写入磁盘,而Spark是放在内存中,所以总体来讲Spark比MapReduce快很多。因此,Hive on Spark也会比Hive on MapReduce快。由于Hive on MapReduce的缺陷,所以企业里基本上很少使用了。

Spark on Hive和Hive on Spark的区别主要体现在以下三个方面:

  1. 数据源:Spark on Hive的数据源是Hive,它从Hive中获取数据,然后对数据进行SparkSQL操作。而Hive on Spark的数据源是Hive本身。
  2. 执行引擎:Spark on Hive底层运行的还是Spark RDD。而Hive on Spark则是将Hive查询从MapReduce操作替换为Spark RDD操作。
  3. 实现方式:Spark on Hive通过SparkSQL加载Hive的配置文件,获取Hive的元数据信息,然后就可以获取Hive的所有表的数据,并对其进行SparkSQL操作。而Hive on Spark则需要重新编译Spark和导入jar包才能实现。
相关推荐
巧克力味的桃子8 分钟前
进制转换3 学习笔记
笔记·学习
Purple Coder21 分钟前
人工智能学习路线
学习
小帅学编程28 分钟前
Spring(侧重注解开发)
java·学习·spring
Data-Miner29 分钟前
精品PPT | 某制造集团灯塔工厂解决方案
大数据·人工智能·制造
爱喝水的鱼丶36 分钟前
SAP-ABAP:在SAP世界里与特殊字符“斗智斗勇”:一份来自实战的避坑指南
运维·服务器·数据库·学习·sap·abap·特殊字符
科技林总42 分钟前
【系统分析师】认证介绍
学习
小湘西1 小时前
Elasticsearch 的一些默认配置上下限
java·大数据·elasticsearch
不吃橘子的橘猫1 小时前
NVIDIA DLI 《Build a Deep Research Agent》学习笔记
开发语言·数据库·笔记·python·学习·算法·ai
刘孬孬沉迷学习1 小时前
层与天线的区别
网络·学习·5g·信息与通信·mimo·预编码·层映射
冬夜戏雪1 小时前
【学习日记】【12.30】【14/60】
服务器·网络·学习