大数据学习(24)-spark on hive和hive on spark的区别

&&大数据学习&&

🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门

💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞


1)Spark on Hive

Spark on Hive 是Hive只作为存储角色,Spark负责sql解析优化,执行。这里可以理解为Spark 通过Spark SQL 使用Hive 语句操作Hive表 ,底层运行的还是 Spark RDD。具体步骤如下:

通过SparkSQL,加载Hive的配置文件,获取到Hive的元数据信息;

获取到Hive的元数据信息之后可以拿到Hive表的数据;

通过SparkSQL来操作Hive表中的数据。

2)Hive on Spark

Hive on Spark是Hive既作为存储又负责sql的解析优化,Spark负责执行。这里Hive的执行引擎变成了Spark,不再是MR,这个要实现比Spark on Hive麻烦很多, 必须重新编译你的spark和导入jar包,不过目前大部分使用的确实是spark on hive。

Hive默认使用MapReduce作为执行引擎,即Hive on MapReduce。实际上,Hive还可以使用Tez和Spark作为其执行引擎,分别为Hive on Tez和Hive on Spark。由于MapReduce中间计算均需要写入磁盘,而Spark是放在内存中,所以总体来讲Spark比MapReduce快很多。因此,Hive on Spark也会比Hive on MapReduce快。由于Hive on MapReduce的缺陷,所以企业里基本上很少使用了。

Spark on Hive和Hive on Spark的区别主要体现在以下三个方面:

  1. 数据源:Spark on Hive的数据源是Hive,它从Hive中获取数据,然后对数据进行SparkSQL操作。而Hive on Spark的数据源是Hive本身。
  2. 执行引擎:Spark on Hive底层运行的还是Spark RDD。而Hive on Spark则是将Hive查询从MapReduce操作替换为Spark RDD操作。
  3. 实现方式:Spark on Hive通过SparkSQL加载Hive的配置文件,获取Hive的元数据信息,然后就可以获取Hive的所有表的数据,并对其进行SparkSQL操作。而Hive on Spark则需要重新编译Spark和导入jar包才能实现。
相关推荐
TL滕14 分钟前
从0开始学算法——第八天(堆排序)
笔记·学习·算法·排序算法
崇山峻岭之间16 分钟前
C++ Prime Plus 学习笔记030
c++·笔记·学习
九河云1 小时前
跨境电商数字化转型:海外仓库存 AI 预警与多平台订单一体化管理实践
大数据·人工智能·数字化转型
代码游侠1 小时前
数据结构——哈希表
数据结构·笔记·学习·算法·哈希算法·散列表
van久2 小时前
.Net Core 学习:DbContextOptions<T> vs DbContextOptions 详细解析
java·学习·.netcore
HalvmånEver2 小时前
Linux:进程替换(进程控制四)
linux·运维·服务器·学习·进程
van久2 小时前
.NET Core 学习第一天:Razor Pages应用介绍及目录结构
学习
新华经济2 小时前
正荣激光焊接机:破解中小型制造场景激光焊接精度与效率困局
大数据·人工智能·制造
嵌入式冰箱2 小时前
“未来杯”2025第五届高校大数据挑战赛赛题【AB题】详细分析
大数据·数学建模
好好研究2 小时前
Git命令
大数据·git·elasticsearch