大数据学习(24)-spark on hive和hive on spark的区别

&&大数据学习&&

🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门

💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞


1)Spark on Hive

Spark on Hive 是Hive只作为存储角色,Spark负责sql解析优化,执行。这里可以理解为Spark 通过Spark SQL 使用Hive 语句操作Hive表 ,底层运行的还是 Spark RDD。具体步骤如下:

通过SparkSQL,加载Hive的配置文件,获取到Hive的元数据信息;

获取到Hive的元数据信息之后可以拿到Hive表的数据;

通过SparkSQL来操作Hive表中的数据。

2)Hive on Spark

Hive on Spark是Hive既作为存储又负责sql的解析优化,Spark负责执行。这里Hive的执行引擎变成了Spark,不再是MR,这个要实现比Spark on Hive麻烦很多, 必须重新编译你的spark和导入jar包,不过目前大部分使用的确实是spark on hive。

Hive默认使用MapReduce作为执行引擎,即Hive on MapReduce。实际上,Hive还可以使用Tez和Spark作为其执行引擎,分别为Hive on Tez和Hive on Spark。由于MapReduce中间计算均需要写入磁盘,而Spark是放在内存中,所以总体来讲Spark比MapReduce快很多。因此,Hive on Spark也会比Hive on MapReduce快。由于Hive on MapReduce的缺陷,所以企业里基本上很少使用了。

Spark on Hive和Hive on Spark的区别主要体现在以下三个方面:

  1. 数据源:Spark on Hive的数据源是Hive,它从Hive中获取数据,然后对数据进行SparkSQL操作。而Hive on Spark的数据源是Hive本身。
  2. 执行引擎:Spark on Hive底层运行的还是Spark RDD。而Hive on Spark则是将Hive查询从MapReduce操作替换为Spark RDD操作。
  3. 实现方式:Spark on Hive通过SparkSQL加载Hive的配置文件,获取Hive的元数据信息,然后就可以获取Hive的所有表的数据,并对其进行SparkSQL操作。而Hive on Spark则需要重新编译Spark和导入jar包才能实现。
相关推荐
Learn Beyond Limits6 分钟前
The learning process of Decision Tree Model|决策树模型学习过程
人工智能·深度学习·神经网络·学习·决策树·机器学习·ai
凯尔萨厮1 小时前
Java学习笔记三(封装)
java·笔记·学习
鸿乃江边鸟1 小时前
Flink中的 BinaryRowData 以及大小端
大数据·sql·flink
YoungUpUp2 小时前
【文件快速搜索神器Everything】实用工具强推——文件快速搜索神器Everything详细图文下载安装教程 办公学习必备软件
学习·everything·文件搜索·实用办公软件·everything 工具·文件快速搜索·搜索神器
RaLi和夕2 小时前
单片机学习笔记.C51存储器类型含义及用法
笔记·单片机·学习
MicroTech20252 小时前
微算法科技(NASDAQ: MLGO)采用量子相位估计(QPE)方法,增强量子神经网络训练
大数据·算法·量子计算
b***25112 小时前
深圳比斯特|多维度分选:圆柱电池品质管控的自动化解决方案
大数据·人工智能
武文斌772 小时前
ARM工作模式、汇编学习
汇编·嵌入式硬件·学习·arm
Flink_China2 小时前
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
大数据·flink
lingggggaaaa3 小时前
小迪安全v2023学习笔记(八十讲)—— 中间件安全&WPS分析&Weblogic&Jenkins&Jetty&CVE
笔记·学习·安全·web安全·网络安全·中间件·wps