强化学习中的“agent“

强化学习中,"agent"(智能体)是指一个在环境中执行动作****以达到某个目标的实体。强化学习是一种机器学习范式,其中智能体通过与环境的交互来学习最优的行为策略,以最大化累积的奖励信号

以下是强化学习中 "agent" 的主要特征和角色:

  1. 感知环境: 智能体能够感知环境中的状态。状态是描述环境的关键信息,可以是观测到的数据、环境的内部表示或其他形式的信息。

  2. 执行动作: 智能体能够执行动作,改变环境的状态。动作是智能体可以选择的操作,其效果可能影响下一个状态和获得的奖励。

  3. 学习策略: 智能体具有一个学习策略,它是从状态动作映射。学习策略可以是确定性的,也可以是概率性的。

  4. 奖励信号: 在每个时间步,环境向智能体提供一个奖励信号,表示智能体在当前状态执行特定动作的好坏程度。智能体的目标是通过学习适当的策略来最大化累积奖励

  5. 学习过程: 智能体通过与环境的交互进行学习。它根据奖励信号调整策略,以便在未来的交互中取得更好的结果。常见的学习算法包括Q学习、深度Q网络(DQN)、策略梯度等。

智能体的目标是发展出一个优秀的策略,使其在不断与环境交互的过程中获得最大的累积奖励。强化学习在许多领域有广泛的应用,包括游戏、机器人控制、自动驾驶等。

相关推荐
lisw0543 分钟前
数字化科技简化移民流程的 5 种方式
大数据·人工智能·机器学习
一车小面包2 小时前
基于bert-base-chinese的外卖评论情绪分类项目
人工智能·机器学习
科研服务器mike_leeso2 小时前
41 年 7 次转型!戴尔从 PC 到 AI 工厂的技术跃迁与组织重构
大数据·人工智能·机器学习
大千AI助手3 小时前
机器学习模型评估指标AUC详解:从理论到实践
人工智能·机器学习·模型评估·roc·precision·recall·auc
程序员大雄学编程4 小时前
「机器学习笔记12」支持向量机(SVM)详解:从数学原理到Python实战
笔记·机器学习·支持向量机
JJJJ_iii5 小时前
【机器学习03】学习率与特征工程、多项式回归、逻辑回归
人工智能·pytorch·笔记·学习·机器学习·回归·逻辑回归
wan5555cn7 小时前
国产电脑操作系统与硬盘兼容性现状分析:挑战与前景评估
人工智能·笔记·深度学习·机器学习·电脑·生活
BullSmall8 小时前
汽车HIL测试:电子开发的关键验证环节
人工智能·机器学习·自动驾驶
Wnq1007214 小时前
如何在移动 的巡检机器人上,实现管道跑冒滴漏的视觉识别
数码相机·opencv·机器学习·计算机视觉·目标跟踪·自动驾驶
zy_destiny16 小时前
【工业场景】用YOLOv8实现抽烟识别
人工智能·python·算法·yolo·机器学习·计算机视觉·目标跟踪