强化学习中的“agent“

强化学习中,"agent"(智能体)是指一个在环境中执行动作****以达到某个目标的实体。强化学习是一种机器学习范式,其中智能体通过与环境的交互来学习最优的行为策略,以最大化累积的奖励信号

以下是强化学习中 "agent" 的主要特征和角色:

  1. 感知环境: 智能体能够感知环境中的状态。状态是描述环境的关键信息,可以是观测到的数据、环境的内部表示或其他形式的信息。

  2. 执行动作: 智能体能够执行动作,改变环境的状态。动作是智能体可以选择的操作,其效果可能影响下一个状态和获得的奖励。

  3. 学习策略: 智能体具有一个学习策略,它是从状态动作映射。学习策略可以是确定性的,也可以是概率性的。

  4. 奖励信号: 在每个时间步,环境向智能体提供一个奖励信号,表示智能体在当前状态执行特定动作的好坏程度。智能体的目标是通过学习适当的策略来最大化累积奖励

  5. 学习过程: 智能体通过与环境的交互进行学习。它根据奖励信号调整策略,以便在未来的交互中取得更好的结果。常见的学习算法包括Q学习、深度Q网络(DQN)、策略梯度等。

智能体的目标是发展出一个优秀的策略,使其在不断与环境交互的过程中获得最大的累积奖励。强化学习在许多领域有广泛的应用,包括游戏、机器人控制、自动驾驶等。

相关推荐
云天徽上1 小时前
【数据可视化】全国星巴克门店可视化
人工智能·机器学习·信息可视化·数据挖掘·数据分析
watersink2 小时前
面试题库笔记
大数据·人工智能·机器学习
一只码代码的章鱼2 小时前
机器学习2 (笔记)(朴素贝叶斯,集成学习,KNN和matlab运用)
人工智能·机器学习
知识鱼丸3 小时前
machine learning knn算法之使用KNN对鸢尾花数据集进行分类
算法·机器学习·分类
周杰伦_Jay3 小时前
简洁明了:介绍大模型的基本概念(大模型和小模型、模型分类、发展历程、泛化和微调)
人工智能·算法·机器学习·生成对抗网络·分类·数据挖掘·transformer
无须logic ᭄3 小时前
CrypTen项目实践
python·机器学习·密码学·同态加密
Coovally AI模型快速验证10 小时前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
orion-orion12 小时前
贝叶斯机器学习:高斯分布及其共轭先验
机器学习·统计学习
余炜yw14 小时前
深入探讨激活函数在神经网络中的应用
人工智能·深度学习·机器学习
赛丽曼15 小时前
机器学习-分类算法评估标准
人工智能·机器学习·分类