OpenCV | 傅里叶变换——低通滤波器与高通滤波器

python 复制代码
  import cv2 #opencv 读取的格式是BGR
import numpy as np
import matplotlib.pyplot as plt #Matplotlib是RGB
%matplotlib inline
python 复制代码
def cv_show(img,name):
    cv2.imshow(name,img)
    cv2.waitKey()
    cv2.destroyAllWindows()

傅里叶变换

傅里叶变换的作用

  • 高频:变化剧烈的灰度分量,例如边界
  • 低频:变化缓慢的灰度分量,例如一片大海

滤波

  • 低通滤波器:只保留低频,会使图像模糊

  • 高通滤波器:只保留高频,会使得图像细节增强

  • opencv中主要就是cv2.dft()和cv2.idft(),输入图像需要先转换成np.float32格式

  • 得到的结果中频率为0的部分会在左上角,通常要转换到中心位置,可以通过shift变换来实现。

  • cv2.dft()返回的结果是双通道的(实部、虚部),通常还需要转换成图像格式才能展示(0,255)

lean.jpg

低通滤波:

python 复制代码
import numpy as np
import cv2
from matplotlib import pyplot as plt
img = cv2.imread('lena.jpg',0)
img_float32 = np.float32(img)

dft = cv2.dft(img_float32,flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

rows, cols = img.shape
crow,ccol = int(rows/2),int(cols/2) #中心位置

#低通滤波
mask = np.zeros((rows,cols,2),np.uint8)
mask[crow-30:crow+30,ccol-30:ccol+30]=1

#IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

plt.subplot(121),plt.imshow(img,cmap='gray')
plt.title('Input Image'),plt.xticks([]),plt.yticks([])
plt.subplot(122),plt.imshow(img_back,cmap='gray')
plt.title('Result'),plt.xticks([]),plt.yticks([])
plt.show()

运行结果:

高通滤波:

python 复制代码
img = cv2.imread('lena.jpg',0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2)     # 中心位置

# 高通滤波
mask = np.ones((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 0

# IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])

plt.show()  

运行结果:

相关推荐
天天找自己1 分钟前
图像梯度处理与边缘检测
人工智能·计算机视觉
沧海归城2 分钟前
Halcon_图像分割
图像处理·opencv·计算机视觉
POLOAPI17 分钟前
AI大模型成本为何能降低99%?技术突破背后的秘密是什么?
人工智能
静心问道20 分钟前
CacheGen:用于快速大语言模型推理服务的 KV 缓存压缩与流式传输
人工智能·模型加速·ai技术应用·缓存压缩与传输
小子阿四21 分钟前
WaveSpeedAI是世界上第一个接Wan 2.2 API的平台
人工智能·aigc
二闹26 分钟前
OpenCV识物:用代码“认出”物体
后端·opencv
Nina_71735 分钟前
AI论文阅读方法+arixiv
论文阅读·人工智能
tilblackout43 分钟前
机器学习详解(28):LightGBM原理
人工智能·机器学习
云卓SKYDROID1 小时前
无人机气动设计模块解析
人工智能·计算机视觉·目标跟踪·无人机·高科技
数据皮皮侠1 小时前
中国汽车能源消耗量(2010-2024年)
大数据·数据库·人工智能·物联网·金融·汽车·能源