OpenCV | 傅里叶变换——低通滤波器与高通滤波器

python 复制代码
  import cv2 #opencv 读取的格式是BGR
import numpy as np
import matplotlib.pyplot as plt #Matplotlib是RGB
%matplotlib inline
python 复制代码
def cv_show(img,name):
    cv2.imshow(name,img)
    cv2.waitKey()
    cv2.destroyAllWindows()

傅里叶变换

傅里叶变换的作用

  • 高频:变化剧烈的灰度分量,例如边界
  • 低频:变化缓慢的灰度分量,例如一片大海

滤波

  • 低通滤波器:只保留低频,会使图像模糊

  • 高通滤波器:只保留高频,会使得图像细节增强

  • opencv中主要就是cv2.dft()和cv2.idft(),输入图像需要先转换成np.float32格式

  • 得到的结果中频率为0的部分会在左上角,通常要转换到中心位置,可以通过shift变换来实现。

  • cv2.dft()返回的结果是双通道的(实部、虚部),通常还需要转换成图像格式才能展示(0,255)

lean.jpg

低通滤波:

python 复制代码
import numpy as np
import cv2
from matplotlib import pyplot as plt
img = cv2.imread('lena.jpg',0)
img_float32 = np.float32(img)

dft = cv2.dft(img_float32,flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

rows, cols = img.shape
crow,ccol = int(rows/2),int(cols/2) #中心位置

#低通滤波
mask = np.zeros((rows,cols,2),np.uint8)
mask[crow-30:crow+30,ccol-30:ccol+30]=1

#IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

plt.subplot(121),plt.imshow(img,cmap='gray')
plt.title('Input Image'),plt.xticks([]),plt.yticks([])
plt.subplot(122),plt.imshow(img_back,cmap='gray')
plt.title('Result'),plt.xticks([]),plt.yticks([])
plt.show()

运行结果:

高通滤波:

python 复制代码
img = cv2.imread('lena.jpg',0)

img_float32 = np.float32(img)

dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2)     # 中心位置

# 高通滤波
mask = np.ones((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 0

# IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])

plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])

plt.show()  

运行结果:

相关推荐
小森776711 分钟前
(四)机器学习---逻辑回归及其Python实现
人工智能·python·算法·机器学习·逻辑回归·线性回归
生信碱移13 分钟前
入门级宏基因组数据分析教程,从实验到分析与应用
人工智能·经验分享·python·神经网络·数据挖掘·数据分析·数据可视化
發發期权酱25 分钟前
期权中的Gamma指标详解
大数据·人工智能
补三补四33 分钟前
【深度学习基础】——机器的神经元:感知机
人工智能·深度学习·算法·机器学习
永洪科技1 小时前
AI领域再突破,永洪科技荣获“2025人工智能+创新案例”奖
大数据·人工智能·科技·数据分析·数据可视化
that's boy1 小时前
Google 发布 Sec-Gemini v1:用 AI 重塑网络安全防御格局?
人工智能·安全·web安全·chatgpt·midjourney·ai编程·ai写作
Sui_Network1 小时前
Crossmint 与 Walrus 合作,将协议集成至其跨链铸造 API 中
人工智能·物联网·游戏·区块链·智能合约
liruiqiang051 小时前
循环神经网络 - 长短期记忆网络
人工智能·rnn·深度学习·神经网络·机器学习·ai·lstm
小杨4041 小时前
python入门系列十六(网络编程)
人工智能·python·网络协议
Elastic 中国社区官方博客1 小时前
Elasticsearch 向量数据库,原生支持 Google Cloud Vertex AI 平台
大数据·数据库·人工智能·elasticsearch·搜索引擎·语言模型·自然语言处理