《opencv实用探索·四》Mat图像数据类型转换和归一化显示

一种数据类型转为另一种数据类型,不改变图像大小,但每个像素值可能会变

cpp 复制代码
src.convertTo(dst, type, scale, shift);

Scale和shitf默认为0(这两个参数也相当于对比度和亮度)

现在有个8位图像,把8位转成32位


可以看到像素大小没变,但位深度变了,8位无符号情况下的图像像素值超过255就溢出,但转成32位就不会溢出。

scale为1.0/255,shitf默认为0

像素值的计算过程为:mat2(191*(1.0/255), 127*(1.0/255), 63*(1.0/255), 0)

scale为1.0/255,shitf为-1


像素值的计算过程为:mat2(191*(1.0/255)-1, 127*(1.0/255)-1, 63*(1.0/255)-1, -1)

我们知道16为无符号像素范围为0-65535,现在有个八位图像Img,像素值是255,转到十六位

cpp 复制代码
img.convertTo(img, CV_16U); 

img像素值还是255,但会出现一个现象:

原来8为的时候像素值是255,但图像显示都很正常,现在转到16位,像素值依旧255,但这时候图像显示基本全黑,这是为啥?

因为8位的时候像素范围是0-255,最亮的像素点大小即为255,当然可以正常显示,但16位范围0-65535,最亮点在65535,255相比65535可以忽略不计,所以图像基本全黑,这时候想要正常显示需要做归一化处理normalize

把0-255扩大到0-65535,这时候能正常显示图像。

转成32位需要注意的是:

32F图像显示范围为0-1,img.convertTo(img, CV_32F); 8位255值转32位依旧255,但32位图像显示范围0-1,超过1就是全白,这时候需要把32位图像归一化处理。

cpp 复制代码
normalize(img,img, 0, 1, NORM_MINMAX); 

img范围0-1,类型32位不变。
注意:不能直接把高位往低位转,比如16位转8位,低于255的不变,高于的全部转位255,数据的实际信息会丢失.如果设置为很大的值,数据丢失的会更大。
注意:归一化不会改变图像位深度,之前是16位,之后也是16位

相关推荐
Coovally AI模型快速验证1 分钟前
MAR-YOLOv9:革新农业检测,YOLOv9的“低调”逆袭
人工智能·神经网络·yolo·计算机视觉·cnn
云和数据.ChenGuang3 分钟前
AI运维工程师技术教程之Linux环境下部署Deepseek
linux·运维·人工智能
cvyoutian6 分钟前
解决 PyTorch 大型 wheel 下载慢、超时和反复重下的问题
人工智能·pytorch·python
oliveray12 分钟前
解决开放世界目标检测问题——Grounding DINO
人工智能·目标检测·计算机视觉
子非鱼92117 分钟前
3 传统序列模型——RNN
人工智能·rnn·深度学习
万俟淋曦18 分钟前
【论文速递】2025年第33周(Aug-10-16)(Robotics/Embodied AI/LLM)
人工智能·深度学习·ai·机器人·论文·robotics·具身智能
卢卡上学22 分钟前
【AI工具】Coze智能体工作流:5分钟制作10个10w+治愈视频,无需拍摄剪辑
人工智能·音视频·ai视频·ai智能体
共绩算力36 分钟前
Maya多模态模型支持8国语言
人工智能·maya·共绩算力
乾元36 分钟前
SDN 与 AI 协同:控制面策略自动化与策略一致性校验
运维·网络·人工智能·网络协议·华为·系统架构·ansible
锡兰_CC37 分钟前
无缝触达,卓越体验:开启openEuler世界的任意门
服务器·网络·数据库·c++·图像处理·qt·nginx