《opencv实用探索·四》Mat图像数据类型转换和归一化显示

一种数据类型转为另一种数据类型,不改变图像大小,但每个像素值可能会变

cpp 复制代码
src.convertTo(dst, type, scale, shift);

Scale和shitf默认为0(这两个参数也相当于对比度和亮度)

现在有个8位图像,把8位转成32位


可以看到像素大小没变,但位深度变了,8位无符号情况下的图像像素值超过255就溢出,但转成32位就不会溢出。

scale为1.0/255,shitf默认为0

像素值的计算过程为:mat2(191*(1.0/255), 127*(1.0/255), 63*(1.0/255), 0)

scale为1.0/255,shitf为-1


像素值的计算过程为:mat2(191*(1.0/255)-1, 127*(1.0/255)-1, 63*(1.0/255)-1, -1)

我们知道16为无符号像素范围为0-65535,现在有个八位图像Img,像素值是255,转到十六位

cpp 复制代码
img.convertTo(img, CV_16U); 

img像素值还是255,但会出现一个现象:

原来8为的时候像素值是255,但图像显示都很正常,现在转到16位,像素值依旧255,但这时候图像显示基本全黑,这是为啥?

因为8位的时候像素范围是0-255,最亮的像素点大小即为255,当然可以正常显示,但16位范围0-65535,最亮点在65535,255相比65535可以忽略不计,所以图像基本全黑,这时候想要正常显示需要做归一化处理normalize

把0-255扩大到0-65535,这时候能正常显示图像。

转成32位需要注意的是:

32F图像显示范围为0-1,img.convertTo(img, CV_32F); 8位255值转32位依旧255,但32位图像显示范围0-1,超过1就是全白,这时候需要把32位图像归一化处理。

cpp 复制代码
normalize(img,img, 0, 1, NORM_MINMAX); 

img范围0-1,类型32位不变。
注意:不能直接把高位往低位转,比如16位转8位,低于255的不变,高于的全部转位255,数据的实际信息会丢失.如果设置为很大的值,数据丢失的会更大。
注意:归一化不会改变图像位深度,之前是16位,之后也是16位

相关推荐
Schwertlilien20 分钟前
图像处理-Ch7-小波函数
图像处理
静静AI学堂30 分钟前
Yolo11改策略:卷积改进|SAC,提升模型对小目标和遮挡目标的检测性能|即插即用
人工智能·深度学习·目标跟踪
martian6651 小时前
【人工智能离散数学基础】——深入详解数理逻辑:理解基础逻辑概念,支持推理和决策系统
人工智能·数理逻辑·推理·决策系统
Schwertlilien1 小时前
图像处理-Ch7-图像金字塔和其他变换
图像处理·人工智能
凡人的AI工具箱1 小时前
每天40分玩转Django:Django类视图
数据库·人工智能·后端·python·django·sqlite
千天夜1 小时前
深度学习中的残差网络、加权残差连接(WRC)与跨阶段部分连接(CSP)详解
网络·人工智能·深度学习·神经网络·yolo·机器学习
一勺汤1 小时前
YOLOv8模型改进 第二十五讲 添加基于卷积调制(Convolution based Attention) 替换自注意力机制
深度学习·yolo·计算机视觉·模块·yolov8·yolov8改进·魔改
凡人的AI工具箱1 小时前
每天40分玩转Django:实操图片分享社区
数据库·人工智能·后端·python·django
小军军军军军军1 小时前
MLU运行Stable Diffusion WebUI Forge【flux】
人工智能·python·语言模型·stable diffusion
诚威_lol_中大努力中2 小时前
关于VQ-GAN利用滑动窗口生成 高清图像
人工智能·神经网络·生成对抗网络