《opencv实用探索·四》Mat图像数据类型转换和归一化显示

一种数据类型转为另一种数据类型,不改变图像大小,但每个像素值可能会变

cpp 复制代码
src.convertTo(dst, type, scale, shift);

Scale和shitf默认为0(这两个参数也相当于对比度和亮度)

现在有个8位图像,把8位转成32位


可以看到像素大小没变,但位深度变了,8位无符号情况下的图像像素值超过255就溢出,但转成32位就不会溢出。

scale为1.0/255,shitf默认为0

像素值的计算过程为:mat2(191*(1.0/255), 127*(1.0/255), 63*(1.0/255), 0)

scale为1.0/255,shitf为-1


像素值的计算过程为:mat2(191*(1.0/255)-1, 127*(1.0/255)-1, 63*(1.0/255)-1, -1)

我们知道16为无符号像素范围为0-65535,现在有个八位图像Img,像素值是255,转到十六位

cpp 复制代码
img.convertTo(img, CV_16U); 

img像素值还是255,但会出现一个现象:

原来8为的时候像素值是255,但图像显示都很正常,现在转到16位,像素值依旧255,但这时候图像显示基本全黑,这是为啥?

因为8位的时候像素范围是0-255,最亮的像素点大小即为255,当然可以正常显示,但16位范围0-65535,最亮点在65535,255相比65535可以忽略不计,所以图像基本全黑,这时候想要正常显示需要做归一化处理normalize

把0-255扩大到0-65535,这时候能正常显示图像。

转成32位需要注意的是:

32F图像显示范围为0-1,img.convertTo(img, CV_32F); 8位255值转32位依旧255,但32位图像显示范围0-1,超过1就是全白,这时候需要把32位图像归一化处理。

cpp 复制代码
normalize(img,img, 0, 1, NORM_MINMAX); 

img范围0-1,类型32位不变。
注意:不能直接把高位往低位转,比如16位转8位,低于255的不变,高于的全部转位255,数据的实际信息会丢失.如果设置为很大的值,数据丢失的会更大。
注意:归一化不会改变图像位深度,之前是16位,之后也是16位

相关推荐
菜鸟冲锋号几秒前
适配AI大模型非结构化数据需求:数据仓库的核心改造方向
大数据·数据仓库·人工智能·大模型
重生之我要成为代码大佬2 分钟前
深度学习2-在2024pycharm版本中导入pytorch
人工智能·pytorch·深度学习
汽车仪器仪表相关领域4 分钟前
亲历机动车排放检测升级:南华NHA-604/605测试仪的实战应用与经验沉淀
人工智能·功能测试·测试工具·安全·汽车·压力测试
凌峰的博客5 分钟前
基于深度学习的图像修复技术调研总结(上)
人工智能
paopao_wu6 分钟前
AI应用开发-Python:Embedding
人工智能·python·embedding
棒棒的皮皮6 分钟前
【OpenCV】Python图像处理形态学之核函数
图像处理·python·opencv·计算机视觉
启途AI7 分钟前
自由编辑+AI 赋能:ChatPPT与Nano Banana Pro的创作革命
人工智能·powerpoint·ppt
产品何同学7 分钟前
情绪经济下的AI应用怎么设计?6个APP原型设计案例拆解
人工智能·ai·产品经理·交友·ai应用·ai伴侣·情绪经济
猿小猴子8 分钟前
主流 AI 大模型开源平台社区之一的 ModelScope (魔搭社区) 介绍
人工智能