《opencv实用探索·四》Mat图像数据类型转换和归一化显示

一种数据类型转为另一种数据类型,不改变图像大小,但每个像素值可能会变

cpp 复制代码
src.convertTo(dst, type, scale, shift);

Scale和shitf默认为0(这两个参数也相当于对比度和亮度)

现在有个8位图像,把8位转成32位


可以看到像素大小没变,但位深度变了,8位无符号情况下的图像像素值超过255就溢出,但转成32位就不会溢出。

scale为1.0/255,shitf默认为0

像素值的计算过程为:mat2(191*(1.0/255), 127*(1.0/255), 63*(1.0/255), 0)

scale为1.0/255,shitf为-1


像素值的计算过程为:mat2(191*(1.0/255)-1, 127*(1.0/255)-1, 63*(1.0/255)-1, -1)

我们知道16为无符号像素范围为0-65535,现在有个八位图像Img,像素值是255,转到十六位

cpp 复制代码
img.convertTo(img, CV_16U); 

img像素值还是255,但会出现一个现象:

原来8为的时候像素值是255,但图像显示都很正常,现在转到16位,像素值依旧255,但这时候图像显示基本全黑,这是为啥?

因为8位的时候像素范围是0-255,最亮的像素点大小即为255,当然可以正常显示,但16位范围0-65535,最亮点在65535,255相比65535可以忽略不计,所以图像基本全黑,这时候想要正常显示需要做归一化处理normalize

把0-255扩大到0-65535,这时候能正常显示图像。

转成32位需要注意的是:

32F图像显示范围为0-1,img.convertTo(img, CV_32F); 8位255值转32位依旧255,但32位图像显示范围0-1,超过1就是全白,这时候需要把32位图像归一化处理。

cpp 复制代码
normalize(img,img, 0, 1, NORM_MINMAX); 

img范围0-1,类型32位不变。
注意:不能直接把高位往低位转,比如16位转8位,低于255的不变,高于的全部转位255,数据的实际信息会丢失.如果设置为很大的值,数据丢失的会更大。
注意:归一化不会改变图像位深度,之前是16位,之后也是16位

相关推荐
百度Geek说5 分钟前
百度慧播星数字人技术演进
人工智能
李昊哲小课29 分钟前
深度学习高级教程:基于生成对抗网络的五子棋对战AI
人工智能·深度学习·生成对抗网络
TDengine (老段)32 分钟前
TDengine IDMP 产品路线图
大数据·数据库·人工智能·ai·时序数据库·tdengine·涛思数据
hoiii18737 分钟前
MATLAB中主成分分析(PCA)与相关性分析的实现
前端·人工智能·matlab
不叫猫先生41 分钟前
AI Prompt 直达生产级爬虫,Bright Data AI Scraper Studio 让数据抓取更高效
人工智能·爬虫·prompt
老蒋新思维41 分钟前
创客匠人启示录:AI 时代知识变现的底层逻辑重构 —— 从峰会实践看创始人 IP 的破局之路
网络·人工智能·网络协议·tcp/ip·数据挖掘·创始人ip·创客匠人
大千AI助手1 小时前
Softmax回归:原理、实现与多分类问题的基石
人工智能·机器学习·分类·数据挖掘·回归·softmax·大千ai助手
机器之心1 小时前
谷歌TPU杀疯了,产能暴涨120%、性能4倍吊打,英伟达还坐得稳吗?
人工智能·openai
币圈菜头1 小时前
GAEA × REVOX 合作 — 共建「情感 AI + Web3 应用」新生态
人工智能·web3·去中心化·区块链
CoovallyAIHub1 小时前
何必先OCR再LLM?视觉语言模型直接读图,让百页长文档信息不丢失
深度学习·算法·计算机视觉