分发饼干
描述
-
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。
-
对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
示例 1
输入: g = [1,2,3], s = [1,1]
输出: 1
解释:
你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。
所以你应该输出1。
示例 2
输入: g = [1,2], s = [1,2,3]
输出: 2
解释:
你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。
你拥有的饼干数量和尺寸都足以让所有孩子满足。
所以你应该输出2.
提示
- 1 <= g.length <= 3 * 1 0 4 10^4 104
- 0 <= s.length <= 3 * 1 0 4 10^4 104
- 1 <= g[i], s[j] <= 2 31 2^{31} 231 - 1
算法实现
1 )排序 + 遍历
ts
function findContentChildren(g: number[], s: number[]): number {
// 升序排序两个数组
g.sort((a, b) => a - b);
s.sort((a, b) => a - b);
let i: number = 0;
// 遍历所有饼干尺寸
s.forEach((item: number) => {
// 饼干能满足当前孩子胃口,则接下来寻找下一个孩子
if(item >= g[i]) ++i;
});
return i;
}
- 解题思路
- 局部最优:既能满足孩子,还消耗最少
- 先将"较小的饼干"分给"胃口最小"的孩子
- 既能满足孩子,还能消耗最小
- 解题步骤
- 对饼干数组和胃口数组升序排序
- 遍历饼干数组,找到能满足第一个孩子的饼干
- 然后继续遍历饼干数组,找到满足第二、三、...、n个孩子的饼干
- 时间复杂度:O(nlogn)
- 主要是sort
- 空间复杂度 O(1)
- 常量
2 )排序 + 双指针 + 贪心
ts
function findContentChildren(g: number[], s: number[]): number {
// 升序排序两个数组
g.sort((a, b) => a - b);
s.sort((a, b) => a - b);
// 获取两个数组的长度
const m: number = g.length, n: number = s.length;
// 累计能满足孩子的数量
let count: number = 0;
for (let i: number = 0, j: number = 0; i < m && j < n; i++, j++) {
// 找出所有饼干范围内 找出 符合 g[i] <= s[j] 的 j
while (j < n && g[i] > s[j]) j++;
// 当 j < n 时, 就记录一个满足条件的数额
if (j < n) count++;
}
// 返回累计满足的数额
return count;
};
- 这是官方提供的思路
- 为了尽可能满足最多数量的孩子,从贪心的角度考虑,应该按照孩子的胃口从小到大的顺序依次满足每个孩子
- 且对于每个孩子,应该选择可以满足这个孩子的胃口且尺寸最小的饼干
- 对于每个元素 g[i],找到未被使用的最小的 j 使得 g[i]≤s[j],则 s[j] 可以满足 g[i]
- 由于 g 和 s 已经排好序,因此整个过程只需要对数组 g 和 s 各遍历一次
- 当两个数组之一遍历结束时,说明所有的孩子都被分配到了饼干,或者所有的饼干都已经被分配或被尝试分配(可能有些饼干无法分配给任何孩子)
- 此时被分配到饼干的孩子数量即为可以满足的最多数量
- 时间复杂度:O(nlogn)
- 严格计算是: O(mlogm+nlogn),其中 m 和 n 分别是数组 g 和 s 的长度
- 对两个数组排序的时间复杂度是 O(mlogm+nlogn),遍历数组的时间复杂度是 O(m+n)
- 因此总时间复杂度是 O(mlogm + nlogn)
- 空间复杂度:O(logn)
- 严格说来是: O(logm+logn)
- 其中 m 和 n 分别是数组 g 和 s 的长度
- 空间复杂度主要是排序的额外空间开销