数据结构与算法之贪心: LeetCode 455. 分饼干 (Typescript版)

分发饼干

描述

  • 假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

  • 对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

示例 1

输入: g = [1,2,3], s = [1,1]
输出: 1
解释: 
你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。
所以你应该输出1。

示例 2

输入: g = [1,2], s = [1,2,3]
输出: 2
解释: 
你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。
你拥有的饼干数量和尺寸都足以让所有孩子满足。
所以你应该输出2.

提示

  • 1 <= g.length <= 3 * 1 0 4 10^4 104
  • 0 <= s.length <= 3 * 1 0 4 10^4 104
  • 1 <= g[i], s[j] <= 2 31 2^{31} 231 - 1

算法实现

1 )排序 + 遍历

ts 复制代码
function findContentChildren(g: number[], s: number[]): number {
    // 升序排序两个数组
    g.sort((a, b) => a - b);
    s.sort((a, b) => a - b);
    let i: number = 0;
    // 遍历所有饼干尺寸
    s.forEach((item: number) => {
        // 饼干能满足当前孩子胃口,则接下来寻找下一个孩子
        if(item >= g[i]) ++i;
    });
    return i;
}
  • 解题思路
    • 局部最优:既能满足孩子,还消耗最少
    • 先将"较小的饼干"分给"胃口最小"的孩子
    • 既能满足孩子,还能消耗最小
  • 解题步骤
    • 对饼干数组和胃口数组升序排序
    • 遍历饼干数组,找到能满足第一个孩子的饼干
    • 然后继续遍历饼干数组,找到满足第二、三、...、n个孩子的饼干
  • 时间复杂度:O(nlogn)
    • 主要是sort
  • 空间复杂度 O(1)
    • 常量

2 )排序 + 双指针 + 贪心

ts 复制代码
function findContentChildren(g: number[], s: number[]): number {
    // 升序排序两个数组
    g.sort((a, b) => a - b);
    s.sort((a, b) => a - b);
    // 获取两个数组的长度
    const m: number = g.length, n: number = s.length;
    // 累计能满足孩子的数量
    let count: number = 0;
    for (let i: number = 0, j: number = 0; i < m && j < n; i++, j++) {
        // 找出所有饼干范围内 找出 符合 g[i] <= s[j] 的 j
        while (j < n && g[i] > s[j]) j++;
        // 当 j < n 时, 就记录一个满足条件的数额
        if (j < n) count++;
    }
    // 返回累计满足的数额
    return count;
};
  • 这是官方提供的思路
  • 为了尽可能满足最多数量的孩子,从贪心的角度考虑,应该按照孩子的胃口从小到大的顺序依次满足每个孩子
  • 且对于每个孩子,应该选择可以满足这个孩子的胃口且尺寸最小的饼干
  • 对于每个元素 g[i],找到未被使用的最小的 j 使得 g[i]≤s[j],则 s[j] 可以满足 g[i]
  • 由于 g 和 s 已经排好序,因此整个过程只需要对数组 g 和 s 各遍历一次
  • 当两个数组之一遍历结束时,说明所有的孩子都被分配到了饼干,或者所有的饼干都已经被分配或被尝试分配(可能有些饼干无法分配给任何孩子)
  • 此时被分配到饼干的孩子数量即为可以满足的最多数量
  • 时间复杂度:O(nlogn)
    • 严格计算是: O(mlog⁡m+nlog⁡n),其中 m 和 n 分别是数组 g 和 s 的长度
    • 对两个数组排序的时间复杂度是 O(mlog⁡m+nlog⁡n),遍历数组的时间复杂度是 O(m+n)
    • 因此总时间复杂度是 O(mlog⁡m + nlog⁡n)
  • 空间复杂度:O(logn)
    • 严格说来是: O(log⁡m+log⁡n)
    • 其中 m 和 n 分别是数组 g 和 s 的长度
    • 空间复杂度主要是排序的额外空间开销
相关推荐
白榆maple14 分钟前
(蓝桥杯C/C++)——基础算法(下)
算法
JSU_曾是此间年少18 分钟前
数据结构——线性表与链表
数据结构·c++·算法
此生只爱蛋1 小时前
【手撕排序2】快速排序
c语言·c++·算法·排序算法
咕咕吖2 小时前
对称二叉树(力扣101)
算法·leetcode·职场和发展
九圣残炎2 小时前
【从零开始的LeetCode-算法】1456. 定长子串中元音的最大数目
java·算法·leetcode
lulu_gh_yu2 小时前
数据结构之排序补充
c语言·开发语言·数据结构·c++·学习·算法·排序算法
丫头,冲鸭!!!3 小时前
B树(B-Tree)和B+树(B+ Tree)
笔记·算法
Re.不晚3 小时前
Java入门15——抽象类
java·开发语言·学习·算法·intellij-idea
为什么这亚子4 小时前
九、Go语言快速入门之map
运维·开发语言·后端·算法·云原生·golang·云计算
4 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习